1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
SUBROUTINE DORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER ROWCOL INTEGER LDU, LWORK, M, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION U( LDU, * ), WORK( * ) * .. * * Purpose * ======= * * DORT01 checks that the matrix U is orthogonal by computing the ratio * * RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', * or * RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. * * Alternatively, if there isn't sufficient workspace to form * I - U*U' or I - U'*U, the ratio is computed as * * RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', * or * RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. * * where EPS is the machine precision. ROWCOL is used only if m = n; * if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is * assumed to be 'R'. * * Arguments * ========= * * ROWCOL (input) CHARACTER * Specifies whether the rows or columns of U should be checked * for orthogonality. Used only if M = N. * = 'R': Check for orthogonal rows of U * = 'C': Check for orthogonal columns of U * * M (input) INTEGER * The number of rows of the matrix U. * * N (input) INTEGER * The number of columns of the matrix U. * * U (input) DOUBLE PRECISION array, dimension (LDU,N) * The orthogonal matrix U. U is checked for orthogonal columns * if m > n or if m = n and ROWCOL = 'C'. U is checked for * orthogonal rows if m < n or if m = n and ROWCOL = 'R'. * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= max(1,M). * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * The length of the array WORK. For best performance, LWORK * should be at least N*(N+1) if ROWCOL = 'C' or M*(M+1) if * ROWCOL = 'R', but the test will be done even if LWORK is 0. * * RESID (output) DOUBLE PRECISION * RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or * RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. CHARACTER TRANSU INTEGER I, J, K, LDWORK, MNMIN DOUBLE PRECISION EPS, TMP * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DDOT, DLAMCH, DLANSY EXTERNAL LSAME, DDOT, DLAMCH, DLANSY * .. * .. External Subroutines .. EXTERNAL DLASET, DSYRK * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Executable Statements .. * RESID = ZERO * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) $ RETURN * EPS = DLAMCH( 'Precision' ) IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN TRANSU = 'N' K = N ELSE TRANSU = 'T' K = M END IF MNMIN = MIN( M, N ) * IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN LDWORK = MNMIN ELSE LDWORK = 0 END IF IF( LDWORK.GT.0 ) THEN * * Compute I - U*U' or I - U'*U. * CALL DLASET( 'Upper', MNMIN, MNMIN, ZERO, ONE, WORK, LDWORK ) CALL DSYRK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK, $ LDWORK ) * * Compute norm( I - U*U' ) / ( K * EPS ) . * RESID = DLANSY( '1', 'Upper', MNMIN, WORK, LDWORK, $ WORK( LDWORK*MNMIN+1 ) ) RESID = ( RESID / DBLE( K ) ) / EPS ELSE IF( TRANSU.EQ.'T' ) THEN * * Find the maximum element in abs( I - U'*U ) / ( m * EPS ) * DO 20 J = 1, N DO 10 I = 1, J IF( I.NE.J ) THEN TMP = ZERO ELSE TMP = ONE END IF TMP = TMP - DDOT( M, U( 1, I ), 1, U( 1, J ), 1 ) RESID = MAX( RESID, ABS( TMP ) ) 10 CONTINUE 20 CONTINUE RESID = ( RESID / DBLE( M ) ) / EPS ELSE * * Find the maximum element in abs( I - U*U' ) / ( n * EPS ) * DO 40 J = 1, M DO 30 I = 1, J IF( I.NE.J ) THEN TMP = ZERO ELSE TMP = ONE END IF TMP = TMP - DDOT( N, U( J, 1 ), LDU, U( I, 1 ), LDU ) RESID = MAX( RESID, ABS( TMP ) ) 30 CONTINUE 40 CONTINUE RESID = ( RESID / DBLE( N ) ) / EPS END IF RETURN * * End of DORT01 * END |