1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
SUBROUTINE DSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
$ LDWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KBAND, LDU, LDWORK, M, N * .. * .. Array Arguments .. DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), SD( * ), $ SE( * ), U( LDU, * ), WORK( LDWORK, * ) * .. * * Purpose * ======= * * DSTT22 checks a set of M eigenvalues and eigenvectors, * * A U = U S * * where A is symmetric tridiagonal, the columns of U are orthogonal, * and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1). * Two tests are performed: * * RESULT(1) = | U' A U - S | / ( |A| m ulp ) * * RESULT(2) = | I - U'U | / ( m ulp ) * * Arguments * ========= * * N (input) INTEGER * The size of the matrix. If it is zero, DSTT22 does nothing. * It must be at least zero. * * M (input) INTEGER * The number of eigenpairs to check. If it is zero, DSTT22 * does nothing. It must be at least zero. * * KBAND (input) INTEGER * The bandwidth of the matrix S. It may only be zero or one. * If zero, then S is diagonal, and SE is not referenced. If * one, then S is symmetric tri-diagonal. * * AD (input) DOUBLE PRECISION array, dimension (N) * The diagonal of the original (unfactored) matrix A. A is * assumed to be symmetric tridiagonal. * * AE (input) DOUBLE PRECISION array, dimension (N) * The off-diagonal of the original (unfactored) matrix A. A * is assumed to be symmetric tridiagonal. AE(1) is ignored, * AE(2) is the (1,2) and (2,1) element, etc. * * SD (input) DOUBLE PRECISION array, dimension (N) * The diagonal of the (symmetric tri-) diagonal matrix S. * * SE (input) DOUBLE PRECISION array, dimension (N) * The off-diagonal of the (symmetric tri-) diagonal matrix S. * Not referenced if KBSND=0. If KBAND=1, then AE(1) is * ignored, SE(2) is the (1,2) and (2,1) element, etc. * * U (input) DOUBLE PRECISION array, dimension (LDU, N) * The orthogonal matrix in the decomposition. * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N. * * WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK, M+1) * * LDWORK (input) INTEGER * The leading dimension of WORK. LDWORK must be at least * max(1,M). * * RESULT (output) DOUBLE PRECISION array, dimension (2) * The values computed by the two tests described above. The * values are currently limited to 1/ulp, to avoid overflow. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. INTEGER I, J, K DOUBLE PRECISION ANORM, AUKJ, ULP, UNFL, WNORM * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLANGE, DLANSY EXTERNAL DLAMCH, DLANGE, DLANSY * .. * .. External Subroutines .. EXTERNAL DGEMM * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 .OR. M.LE.0 ) $ RETURN * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' ) * * Do Test 1 * * Compute the 1-norm of A. * IF( N.GT.1 ) THEN ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) ) DO 10 J = 2, N - 1 ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+ $ ABS( AE( J-1 ) ) ) 10 CONTINUE ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) ) ELSE ANORM = ABS( AD( 1 ) ) END IF ANORM = MAX( ANORM, UNFL ) * * Norm of U'AU - S * DO 40 I = 1, M DO 30 J = 1, M WORK( I, J ) = ZERO DO 20 K = 1, N AUKJ = AD( K )*U( K, J ) IF( K.NE.N ) $ AUKJ = AUKJ + AE( K )*U( K+1, J ) IF( K.NE.1 ) $ AUKJ = AUKJ + AE( K-1 )*U( K-1, J ) WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ 20 CONTINUE 30 CONTINUE WORK( I, I ) = WORK( I, I ) - SD( I ) IF( KBAND.EQ.1 ) THEN IF( I.NE.1 ) $ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 ) IF( I.NE.N ) $ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I ) END IF 40 CONTINUE * WNORM = DLANSY( '1', 'L', M, WORK, M, WORK( 1, M+1 ) ) * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP ) END IF END IF * * Do Test 2 * * Compute U'U - I * CALL DGEMM( 'T', 'N', M, M, N, ONE, U, LDU, U, LDU, ZERO, WORK, $ M ) * DO 50 J = 1, M WORK( J, J ) = WORK( J, J ) - ONE 50 CONTINUE * RESULT( 2 ) = MIN( DBLE( M ), DLANGE( '1', M, M, WORK, M, WORK( 1, $ M+1 ) ) ) / ( M*ULP ) * RETURN * * End of DSTT22 * END |