1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
SUBROUTINE SGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
$ LDV, WORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LDS, LDT, LDU, LDV, N REAL RESULT * .. * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), S( LDS, * ), $ T( LDT, * ), U( LDU, * ), V( LDV, * ), $ WORK( * ) * .. * * Purpose * ======= * * SGET54 checks a generalized decomposition of the form * * A = U*S*V' and B = U*T* V' * * where ' means transpose and U and V are orthogonal. * * Specifically, * * RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp ) * * Arguments * ========= * * N (input) INTEGER * The size of the matrix. If it is zero, SGET54 does nothing. * It must be at least zero. * * A (input) REAL array, dimension (LDA, N) * The original (unfactored) matrix A. * * LDA (input) INTEGER * The leading dimension of A. It must be at least 1 * and at least N. * * B (input) REAL array, dimension (LDB, N) * The original (unfactored) matrix B. * * LDB (input) INTEGER * The leading dimension of B. It must be at least 1 * and at least N. * * S (input) REAL array, dimension (LDS, N) * The factored matrix S. * * LDS (input) INTEGER * The leading dimension of S. It must be at least 1 * and at least N. * * T (input) REAL array, dimension (LDT, N) * The factored matrix T. * * LDT (input) INTEGER * The leading dimension of T. It must be at least 1 * and at least N. * * U (input) REAL array, dimension (LDU, N) * The orthogonal matrix on the left-hand side in the * decomposition. * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N and * at least 1. * * V (input) REAL array, dimension (LDV, N) * The orthogonal matrix on the left-hand side in the * decomposition. * * LDV (input) INTEGER * The leading dimension of V. LDV must be at least N and * at least 1. * * WORK (workspace) REAL array, dimension (3*N**2) * * RESULT (output) REAL * The value RESULT, It is currently limited to 1/ulp, to * avoid overflow. Errors are flagged by RESULT=10/ulp. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. REAL ABNORM, ULP, UNFL, WNORM * .. * .. Local Arrays .. REAL DUM( 1 ) * .. * .. External Functions .. REAL SLAMCH, SLANGE EXTERNAL SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SGEMM, SLACPY * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * RESULT = ZERO IF( N.LE.0 ) $ RETURN * * Constants * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) * * compute the norm of (A,B) * CALL SLACPY( 'Full', N, N, A, LDA, WORK, N ) CALL SLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N ) ABNORM = MAX( SLANGE( '1', N, 2*N, WORK, N, DUM ), UNFL ) * * Compute W1 = A - U*S*V', and put in the array WORK(1:N*N) * CALL SLACPY( ' ', N, N, A, LDA, WORK, N ) CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, S, LDS, ZERO, $ WORK( N*N+1 ), N ) * CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( N*N+1 ), N, V, LDV, $ ONE, WORK, N ) * * Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N) * CALL SLACPY( ' ', N, N, B, LDB, WORK( N*N+1 ), N ) CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, T, LDT, ZERO, $ WORK( 2*N*N+1 ), N ) * CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( 2*N*N+1 ), N, V, LDV, $ ONE, WORK( N*N+1 ), N ) * * Compute norm(W)/ ( ulp*norm((A,B)) ) * WNORM = SLANGE( '1', N, 2*N, WORK, N, DUM ) * IF( ABNORM.GT.WNORM ) THEN RESULT = ( WNORM / ABNORM ) / ( 2*N*ULP ) ELSE IF( ABNORM.LT.ONE ) THEN RESULT = ( MIN( WNORM, 2*N*ABNORM ) / ABNORM ) / ( 2*N*ULP ) ELSE RESULT = MIN( WNORM / ABNORM, REAL( 2*N ) ) / ( 2*N*ULP ) END IF END IF * RETURN * * End of SGET54 * END |