1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
SUBROUTINE SGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
$ X, U, WORK, LWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LWORK, M, P, N REAL RESULT * .. * .. Array Arguments .. REAL A( LDA, * ), AF( LDA, * ), B( LDB, * ), $ BF( LDB, * ), RWORK( * ), D( * ), DF( * ), $ U( * ), WORK( LWORK ), X( * ) * * Purpose * ======= * * SGLMTS tests SGGGLM - a subroutine for solving the generalized * linear model problem. * * Arguments * ========= * * N (input) INTEGER * The number of rows of the matrices A and B. N >= 0. * * M (input) INTEGER * The number of columns of the matrix A. M >= 0. * * P (input) INTEGER * The number of columns of the matrix B. P >= 0. * * A (input) REAL array, dimension (LDA,M) * The N-by-M matrix A. * * AF (workspace) REAL array, dimension (LDA,M) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF. LDA >= max(M,N). * * B (input) REAL array, dimension (LDB,P) * The N-by-P matrix A. * * BF (workspace) REAL array, dimension (LDB,P) * * LDB (input) INTEGER * The leading dimension of the arrays B, BF. LDB >= max(P,N). * * D (input) REAL array, dimension( N ) * On input, the left hand side of the GLM. * * DF (workspace) REAL array, dimension( N ) * * X (output) REAL array, dimension( M ) * solution vector X in the GLM problem. * * U (output) REAL array, dimension( P ) * solution vector U in the GLM problem. * * WORK (workspace) REAL array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * * RWORK (workspace) REAL array, dimension (M) * * RESULT (output) REAL * The test ratio: * norm( d - A*x - B*u ) * RESULT = ----------------------------------------- * (norm(A)+norm(B))*(norm(x)+norm(u))*EPS * * ==================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL * .. * .. External Functions .. REAL SASUM, SLAMCH, SLANGE EXTERNAL SASUM, SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SLACPY * * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * EPS = SLAMCH( 'Epsilon' ) UNFL = SLAMCH( 'Safe minimum' ) ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL ) BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL ) * * Copy the matrices A and B to the arrays AF and BF, * and the vector D the array DF. * CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA ) CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB ) CALL SCOPY( N, D, 1, DF, 1 ) * * Solve GLM problem * CALL SGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK, $ INFO ) * * Test the residual for the solution of LSE * * norm( d - A*x - B*u ) * RESULT = ----------------------------------------- * (norm(A)+norm(B))*(norm(x)+norm(u))*EPS * CALL SCOPY( N, D, 1, DF, 1 ) CALL SGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1, $ ONE, DF, 1 ) * CALL SGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1, $ ONE, DF, 1 ) * DNORM = SASUM( N, DF, 1 ) XNORM = SASUM( M, X, 1 ) + SASUM( P, U, 1 ) YNORM = ANORM + BNORM * IF( XNORM.LE.ZERO ) THEN RESULT = ZERO ELSE RESULT = ( ( DNORM / YNORM ) / XNORM ) /EPS END IF * RETURN * * End of SGLMTS * END |