1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
SUBROUTINE SGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
$ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LWORK, M, P, N * .. * .. Array Arguments .. REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ), $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ), $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ), $ TAUA( * ), TAUB( * ), RESULT( 4 ), $ RWORK( * ), WORK( LWORK ) * .. * * Purpose * ======= * * SGQRTS tests SGGQRF, which computes the GQR factorization of an * N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z. * * Arguments * ========= * * N (input) INTEGER * The number of rows of the matrices A and B. N >= 0. * * M (input) INTEGER * The number of columns of the matrix A. M >= 0. * * P (input) INTEGER * The number of columns of the matrix B. P >= 0. * * A (input) REAL array, dimension (LDA,M) * The N-by-M matrix A. * * AF (output) REAL array, dimension (LDA,N) * Details of the GQR factorization of A and B, as returned * by SGGQRF, see SGGQRF for further details. * * Q (output) REAL array, dimension (LDA,N) * The M-by-M orthogonal matrix Q. * * R (workspace) REAL array, dimension (LDA,MAX(M,N)) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF, R and Q. * LDA >= max(M,N). * * TAUA (output) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors, as returned * by SGGQRF. * * B (input) REAL array, dimension (LDB,P) * On entry, the N-by-P matrix A. * * BF (output) REAL array, dimension (LDB,N) * Details of the GQR factorization of A and B, as returned * by SGGQRF, see SGGQRF for further details. * * Z (output) REAL array, dimension (LDB,P) * The P-by-P orthogonal matrix Z. * * T (workspace) REAL array, dimension (LDB,max(P,N)) * * BWK (workspace) REAL array, dimension (LDB,N) * * LDB (input) INTEGER * The leading dimension of the arrays B, BF, Z and T. * LDB >= max(P,N). * * TAUB (output) REAL array, dimension (min(P,N)) * The scalar factors of the elementary reflectors, as returned * by SGGRQF. * * WORK (workspace) REAL array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK, LWORK >= max(N,M,P)**2. * * RWORK (workspace) REAL array, dimension (max(N,M,P)) * * RESULT (output) REAL array, dimension (4) * The test ratios: * RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) * RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) * RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) * RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL ROGUE PARAMETER ( ROGUE = -1.0E+10 ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, BNORM, ULP, UNFL, RESID * .. * .. External Functions .. REAL SLAMCH, SLANGE, SLANSY EXTERNAL SLAMCH, SLANGE, SLANSY * .. * .. External Subroutines .. EXTERNAL SGEMM, SLACPY, SLASET, SORGQR, $ SORGRQ, SSYRK * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * ULP = SLAMCH( 'Precision' ) UNFL = SLAMCH( 'Safe minimum' ) * * Copy the matrix A to the array AF. * CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA ) CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB ) * ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL ) BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL ) * * Factorize the matrices A and B in the arrays AF and BF. * CALL SGGQRF( N, M, P, AF, LDA, TAUA, BF, LDB, TAUB, WORK, $ LWORK, INFO ) * * Generate the N-by-N matrix Q * CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA ) CALL SLACPY( 'Lower', N-1, M, AF( 2,1 ), LDA, Q( 2,1 ), LDA ) CALL SORGQR( N, N, MIN( N, M ), Q, LDA, TAUA, WORK, LWORK, INFO ) * * Generate the P-by-P matrix Z * CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB ) IF( N.LE.P ) THEN IF( N.GT.0 .AND. N.LT.P ) $ CALL SLACPY( 'Full', N, P-N, BF, LDB, Z( P-N+1, 1 ), LDB ) IF( N.GT.1 ) $ CALL SLACPY( 'Lower', N-1, N-1, BF( 2, P-N+1 ), LDB, $ Z( P-N+2, P-N+1 ), LDB ) ELSE IF( P.GT.1) $ CALL SLACPY( 'Lower', P-1, P-1, BF( N-P+2, 1 ), LDB, $ Z( 2, 1 ), LDB ) END IF CALL SORGRQ( P, P, MIN( N, P ), Z, LDB, TAUB, WORK, LWORK, INFO ) * * Copy R * CALL SLASET( 'Full', N, M, ZERO, ZERO, R, LDA ) CALL SLACPY( 'Upper', N, M, AF, LDA, R, LDA ) * * Copy T * CALL SLASET( 'Full', N, P, ZERO, ZERO, T, LDB ) IF( N.LE.P ) THEN CALL SLACPY( 'Upper', N, N, BF( 1, P-N+1 ), LDB, T( 1, P-N+1 ), $ LDB ) ELSE CALL SLACPY( 'Full', N-P, P, BF, LDB, T, LDB ) CALL SLACPY( 'Upper', P, P, BF( N-P+1, 1 ), LDB, T( N-P+1, 1 ), $ LDB ) END IF * * Compute R - Q'*A * CALL SGEMM( 'Transpose', 'No transpose', N, M, N, -ONE, Q, LDA, A, $ LDA, ONE, R, LDA ) * * Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) . * RESID = SLANGE( '1', N, M, R, LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL( MAX(1,M,N) ) ) / ANORM ) / ULP ELSE RESULT( 1 ) = ZERO END IF * * Compute T*Z - Q'*B * CALL SGEMM( 'No Transpose', 'No transpose', N, P, P, ONE, T, LDB, $ Z, LDB, ZERO, BWK, LDB ) CALL SGEMM( 'Transpose', 'No transpose', N, P, N, -ONE, Q, LDA, $ B, LDB, ONE, BWK, LDB ) * * Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) . * RESID = SLANGE( '1', N, P, BWK, LDB, RWORK ) IF( BNORM.GT.ZERO ) THEN RESULT( 2 ) = ( ( RESID / REAL( MAX(1,P,N ) ) )/BNORM ) / ULP ELSE RESULT( 2 ) = ZERO END IF * * Compute I - Q'*Q * CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA ) CALL SSYRK( 'Upper', 'Transpose', N, N, -ONE, Q, LDA, ONE, R, $ LDA ) * * Compute norm( I - Q'*Q ) / ( N * ULP ) . * RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK ) RESULT( 3 ) = ( RESID / REAL( MAX( 1, N ) ) ) / ULP * * Compute I - Z'*Z * CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB ) CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T, $ LDB ) * * Compute norm( I - Z'*Z ) / ( P*ULP ) . * RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK ) RESULT( 4 ) = ( RESID / REAL( MAX( 1, P ) ) ) / ULP * RETURN * * End of SGQRTS * END |