1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
SUBROUTINE SHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
$ LWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER IHI, ILO, LDA, LDH, LDQ, LWORK, N * .. * .. Array Arguments .. REAL A( LDA, * ), H( LDH, * ), Q( LDQ, * ), $ RESULT( 2 ), WORK( LWORK ) * .. * * Purpose * ======= * * SHST01 tests the reduction of a general matrix A to upper Hessenberg * form: A = Q*H*Q'. Two test ratios are computed; * * RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) * RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) * * The matrix Q is assumed to be given explicitly as it would be * following SGEHRD + SORGHR. * * In this version, ILO and IHI are not used and are assumed to be 1 and * N, respectively. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * ILO (input) INTEGER * IHI (input) INTEGER * A is assumed to be upper triangular in rows and columns * 1:ILO-1 and IHI+1:N, so Q differs from the identity only in * rows and columns ILO+1:IHI. * * A (input) REAL array, dimension (LDA,N) * The original n by n matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * H (input) REAL array, dimension (LDH,N) * The upper Hessenberg matrix H from the reduction A = Q*H*Q' * as computed by SGEHRD. H is assumed to be zero below the * first subdiagonal. * * LDH (input) INTEGER * The leading dimension of the array H. LDH >= max(1,N). * * Q (input) REAL array, dimension (LDQ,N) * The orthogonal matrix Q from the reduction A = Q*H*Q' as * computed by SGEHRD + SORGHR. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,N). * * WORK (workspace) REAL array, dimension (LWORK) * * LWORK (input) INTEGER * The length of the array WORK. LWORK >= 2*N*N. * * RESULT (output) REAL array, dimension (2) * RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) * RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER LDWORK REAL ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM * .. * .. External Functions .. REAL SLAMCH, SLANGE EXTERNAL SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SGEMM, SLABAD, SLACPY, SORT01 * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.0 ) THEN RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO RETURN END IF * UNFL = SLAMCH( 'Safe minimum' ) EPS = SLAMCH( 'Precision' ) OVFL = ONE / UNFL CALL SLABAD( UNFL, OVFL ) SMLNUM = UNFL*N / EPS * * Test 1: Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) * * Copy A to WORK * LDWORK = MAX( 1, N ) CALL SLACPY( ' ', N, N, A, LDA, WORK, LDWORK ) * * Compute Q*H * CALL SGEMM( 'No transpose', 'No transpose', N, N, N, ONE, Q, LDQ, $ H, LDH, ZERO, WORK( LDWORK*N+1 ), LDWORK ) * * Compute A - Q*H*Q' * CALL SGEMM( 'No transpose', 'Transpose', N, N, N, -ONE, $ WORK( LDWORK*N+1 ), LDWORK, Q, LDQ, ONE, WORK, $ LDWORK ) * ANORM = MAX( SLANGE( '1', N, N, A, LDA, WORK( LDWORK*N+1 ) ), $ UNFL ) WNORM = SLANGE( '1', N, N, WORK, LDWORK, WORK( LDWORK*N+1 ) ) * * Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS) * RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N * * Test 2: Compute norm( I - Q'*Q ) / ( N * EPS ) * CALL SORT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RESULT( 2 ) ) * RETURN * * End of SHST01 * END |