SSBT21
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
November 2006
Purpose
SSBT21  generally checks a decomposition of the form
A = U S U'
where ' means transpose, A is symmetric banded, U is
orthogonal, and S is diagonal (if KS=0) or symmetric
tridiagonal (if KS=1).
Specifically:
RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and*
RESULT(2) = | I - UU' | / ( n ulp )
A = U S U'
where ' means transpose, A is symmetric banded, U is
orthogonal, and S is diagonal (if KS=0) or symmetric
tridiagonal (if KS=1).
Specifically:
RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and*
RESULT(2) = | I - UU' | / ( n ulp )
Arguments
| UPLO | 
 
(input) CHARACTER
 
If UPLO='U', the upper triangle of A and V will be used and 
the (strictly) lower triangle will not be referenced. If UPLO='L', the lower triangle of A and V will be used and the (strictly) upper triangle will not be referenced.  | 
| N | 
 
(input) INTEGER
 
The size of the matrix.  If it is zero, SSBT21 does nothing. 
It must be at least zero.  | 
| KA | 
 
(input) INTEGER
 
The bandwidth of the matrix A.  It must be at least zero.  If 
it is larger than N-1, then max( 0, N-1 ) will be used.  | 
| KS | 
 
(input) INTEGER
 
The bandwidth of the matrix S.  It may only be zero or one. 
If zero, then S is diagonal, and E is not referenced. If one, then S is symmetric tri-diagonal.  | 
| A | 
 
(input) REAL array, dimension (LDA, N)
 
The original (unfactored) matrix.  It is assumed to be 
symmetric, and only the upper (UPLO='U') or only the lower (UPLO='L') will be referenced.  | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of A.  It must be at least 1 
and at least min( KA, N-1 ).  | 
| D | 
 
(input) REAL array, dimension (N)
 
The diagonal of the (symmetric tri-) diagonal matrix S. 
 | 
| E | 
 
(input) REAL array, dimension (N-1)
 
The off-diagonal of the (symmetric tri-) diagonal matrix S. 
E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and (3,2) element, etc. Not referenced if KS=0.  | 
| U | 
 
(input) REAL array, dimension (LDU, N)
 
The orthogonal matrix in the decomposition, expressed as a 
dense matrix (i.e., not as a product of Householder transformations, Givens transformations, etc.)  | 
| LDU | 
 
(input) INTEGER
 
The leading dimension of U.  LDU must be at least N and 
at least 1.  | 
| WORK | 
 
(workspace) REAL array, dimension (N**2+N)
 
 | 
| RESULT | 
 
(output) REAL array, dimension (2)
 
The values computed by the two tests described above.  The 
values are currently limited to 1/ulp, to avoid overflow.  |