1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
$ RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KBAND, LDU, N * .. * .. Array Arguments .. REAL AD( * ), AE( * ), RESULT( 2 ), SD( * ), $ SE( * ), U( LDU, * ), WORK( * ) * .. * * Purpose * ======= * * SSTT21 checks a decomposition of the form * * A = U S U' * * where ' means transpose, A is symmetric tridiagonal, U is orthogonal, * and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1). * Two tests are performed: * * RESULT(1) = | A - U S U' | / ( |A| n ulp ) * * RESULT(2) = | I - UU' | / ( n ulp ) * * Arguments * ========= * * N (input) INTEGER * The size of the matrix. If it is zero, SSTT21 does nothing. * It must be at least zero. * * KBAND (input) INTEGER * The bandwidth of the matrix S. It may only be zero or one. * If zero, then S is diagonal, and SE is not referenced. If * one, then S is symmetric tri-diagonal. * * AD (input) REAL array, dimension (N) * The diagonal of the original (unfactored) matrix A. A is * assumed to be symmetric tridiagonal. * * AE (input) REAL array, dimension (N-1) * The off-diagonal of the original (unfactored) matrix A. A * is assumed to be symmetric tridiagonal. AE(1) is the (1,2) * and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. * * SD (input) REAL array, dimension (N) * The diagonal of the (symmetric tri-) diagonal matrix S. * * SE (input) REAL array, dimension (N-1) * The off-diagonal of the (symmetric tri-) diagonal matrix S. * Not referenced if KBSND=0. If KBAND=1, then AE(1) is the * (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) * element, etc. * * U (input) REAL array, dimension (LDU, N) * The orthogonal matrix in the decomposition. * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N. * * WORK (workspace) REAL array, dimension (N*(N+1)) * * RESULT (output) REAL array, dimension (2) * The values computed by the two tests described above. The * values are currently limited to 1/ulp, to avoid overflow. * RESULT(1) is always modified. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. INTEGER J REAL ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM * .. * .. External Functions .. REAL SLAMCH, SLANGE, SLANSY EXTERNAL SLAMCH, SLANGE, SLANSY * .. * .. External Subroutines .. EXTERNAL SGEMM, SLASET, SSYR, SSYR2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL * .. * .. Executable Statements .. * * 1) Constants * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Precision' ) * * Do Test 1 * * Copy A & Compute its 1-Norm: * CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N ) * ANORM = ZERO TEMP1 = ZERO * DO 10 J = 1, N - 1 WORK( ( N+1 )*( J-1 )+1 ) = AD( J ) WORK( ( N+1 )*( J-1 )+2 ) = AE( J ) TEMP2 = ABS( AE( J ) ) ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 ) TEMP1 = TEMP2 10 CONTINUE * WORK( N**2 ) = AD( N ) ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL ) * * Norm of A - USU' * DO 20 J = 1, N CALL SSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N ) 20 CONTINUE * IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN DO 30 J = 1, N - 1 CALL SSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1, $ WORK, N ) 30 CONTINUE END IF * WNORM = SLANSY( '1', 'L', N, WORK, N, WORK( N**2+1 ) ) * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) END IF END IF * * Do Test 2 * * Compute UU' - I * CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK, $ N ) * DO 40 J = 1, N WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE 40 CONTINUE * RESULT( 2 ) = MIN( REAL( N ), SLANGE( '1', N, N, WORK, N, $ WORK( N**2+1 ) ) ) / ( N*ULP ) * RETURN * * End of SSTT21 * END |