1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
SUBROUTINE SSYT22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
$ V, LDV, TAU, WORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), D( * ), E( * ), RESULT( 2 ), $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) * .. * * Purpose * ======= * * SSYT22 generally checks a decomposition of the form * * A U = U S * * where A is symmetric, the columns of U are orthonormal, and S * is diagonal (if KBAND=0) or symmetric tridiagonal (if * KBAND=1). If ITYPE=1, then U is represented as a dense matrix, * otherwise the U is expressed as a product of Householder * transformations, whose vectors are stored in the array "V" and * whose scaling constants are in "TAU"; we shall use the letter * "V" to refer to the product of Householder transformations * (which should be equal to U). * * Specifically, if ITYPE=1, then: * * RESULT(1) = | U' A U - S | / ( |A| m ulp ) *and* * RESULT(2) = | I - U'U | / ( m ulp ) * * Arguments * ========= * * ITYPE INTEGER * Specifies the type of tests to be performed. * 1: U expressed as a dense orthogonal matrix: * RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and* * RESULT(2) = | I - UU' | / ( n ulp ) * * UPLO CHARACTER * If UPLO='U', the upper triangle of A will be used and the * (strictly) lower triangle will not be referenced. If * UPLO='L', the lower triangle of A will be used and the * (strictly) upper triangle will not be referenced. * Not modified. * * N INTEGER * The size of the matrix. If it is zero, SSYT22 does nothing. * It must be at least zero. * Not modified. * * M INTEGER * The number of columns of U. If it is zero, SSYT22 does * nothing. It must be at least zero. * Not modified. * * KBAND INTEGER * The bandwidth of the matrix. It may only be zero or one. * If zero, then S is diagonal, and E is not referenced. If * one, then S is symmetric tri-diagonal. * Not modified. * * A REAL array, dimension (LDA , N) * The original (unfactored) matrix. It is assumed to be * symmetric, and only the upper (UPLO='U') or only the lower * (UPLO='L') will be referenced. * Not modified. * * LDA INTEGER * The leading dimension of A. It must be at least 1 * and at least N. * Not modified. * * D REAL array, dimension (N) * The diagonal of the (symmetric tri-) diagonal matrix. * Not modified. * * E REAL array, dimension (N) * The off-diagonal of the (symmetric tri-) diagonal matrix. * E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc. * Not referenced if KBAND=0. * Not modified. * * U REAL array, dimension (LDU, N) * If ITYPE=1 or 3, this contains the orthogonal matrix in * the decomposition, expressed as a dense matrix. If ITYPE=2, * then it is not referenced. * Not modified. * * LDU INTEGER * The leading dimension of U. LDU must be at least N and * at least 1. * Not modified. * * V REAL array, dimension (LDV, N) * If ITYPE=2 or 3, the lower triangle of this array contains * the Householder vectors used to describe the orthogonal * matrix in the decomposition. If ITYPE=1, then it is not * referenced. * Not modified. * * LDV INTEGER * The leading dimension of V. LDV must be at least N and * at least 1. * Not modified. * * TAU REAL array, dimension (N) * If ITYPE >= 2, then TAU(j) is the scalar factor of * v(j) v(j)' in the Householder transformation H(j) of * the product U = H(1)...H(n-2) * If ITYPE < 2, then TAU is not referenced. * Not modified. * * WORK REAL array, dimension (2*N**2) * Workspace. * Modified. * * RESULT REAL array, dimension (2) * The values computed by the two tests described above. The * values are currently limited to 1/ulp, to avoid overflow. * RESULT(1) is always modified. RESULT(2) is modified only * if LDU is at least N. * Modified. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. INTEGER J, JJ, JJ1, JJ2, NN, NNP1 REAL ANORM, ULP, UNFL, WNORM * .. * .. External Functions .. REAL SLAMCH, SLANSY EXTERNAL SLAMCH, SLANSY * .. * .. External Subroutines .. EXTERNAL SGEMM, SSYMM * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 .OR. M.LE.0 ) $ RETURN * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Precision' ) * * Do Test 1 * * Norm of A: * ANORM = MAX( SLANSY( '1', UPLO, N, A, LDA, WORK ), UNFL ) * * Compute error matrix: * * ITYPE=1: error = U' A U - S * CALL SSYMM( 'L', UPLO, N, M, ONE, A, LDA, U, LDU, ZERO, WORK, N ) NN = N*N NNP1 = NN + 1 CALL SGEMM( 'T', 'N', M, M, N, ONE, U, LDU, WORK, N, ZERO, $ WORK( NNP1 ), N ) DO 10 J = 1, M JJ = NN + ( J-1 )*N + J WORK( JJ ) = WORK( JJ ) - D( J ) 10 CONTINUE IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN DO 20 J = 2, M JJ1 = NN + ( J-1 )*N + J - 1 JJ2 = NN + ( J-2 )*N + J WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 ) WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 ) 20 CONTINUE END IF WNORM = SLANSY( '1', UPLO, M, WORK( NNP1 ), N, WORK( 1 ) ) * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP ) END IF END IF * * Do Test 2 * * Compute U'U - I * IF( ITYPE.EQ.1 ) $ CALL SORT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, $ RESULT( 2 ) ) * RETURN * * End of SSYT22 * END |