ZCHKGG

   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
   November 2006

Purpose

ZCHKGG  checks the nonsymmetric generalized eigenvalue problem
routines.
                               H          H        H
ZGGHRD factors A and B as U H V  and U T V , where   means conjugate
transpose, H is hessenberg, T is triangular and U and V are unitary.

                                H          H
ZHGEQZ factors H and T as  Q S Z  and Q P Z , where P and S are upper
triangular and Q and Z are unitary.  It also computes the generalized
eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)), where
alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus, w(j) = alpha(j)/beta(j)
is a root of the generalized eigenvalue problem

    det( A - w(j) B ) = 0

and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
problem

    det( m(j) A - B ) = 0

ZTGEVC computes the matrix L of left eigenvectors and the matrix R
of right eigenvectors for the matrix pair ( S, P ).  In the
description below,  l and r are left and right eigenvectors
corresponding to the generalized eigenvalues (alpha,beta).

When ZCHKGG is called, a number of matrix "sizes" ("n's") and a
number of matrix "types" are specified.  For each size ("n")
and each type of matrix, one matrix will be generated and used
to test the nonsymmetric eigenroutines.  For each matrix, 13
tests will be performed.  The first twelve "test ratios" should be
small -- O(1).  They will be compared with the threshhold THRESH:

                 H
(1)   | A - U H V  | / ( |A| n ulp )

                 H
(2)   | B - U T V  | / ( |B| n ulp )

              H
(3)   | I - UU  | / ( n ulp )

              H
(4)   | I - VV  | / ( n ulp )

                 H
(5)   | H - Q S Z  | / ( |H| n ulp )

                 H
(6)   | T - Q P Z  | / ( |T| n ulp )

              H
(7)   | I - QQ  | / ( n ulp )

              H
(8)   | I - ZZ  | / ( n ulp )

(9)   max over all left eigenvalue/-vector pairs (beta/alpha,l) of
                          H
      | (beta A - alpha B) l | / ( ulp max( |beta A|, |alpha B| ) )

(10)  max over all left eigenvalue/-vector pairs (beta/alpha,l') of
                          H
      | (beta H - alpha T) l' | / ( ulp max( |beta H|, |alpha T| ) )

      where the eigenvectors l' are the result of passing Q to
      DTGEVC and back transforming (JOB='B').

(11)  max over all right eigenvalue/-vector pairs (beta/alpha,r) of

      | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )

(12)  max over all right eigenvalue/-vector pairs (beta/alpha,r') of

      | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) )

      where the eigenvectors r' are the result of passing Z to
      DTGEVC and back transforming (JOB='B').

The last three test ratios will usually be small, but there is no
mathematical requirement that they be so.  They are therefore
compared with THRESH only if TSTDIF is .TRUE.

(13)  | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp )

(14)  | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp )

(15)  max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| ,
           |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp

In addition, the normalization of L and R are checked, and compared
with the threshhold THRSHN.

Test Matrices

The sizes of the test matrices are specified by an array
NN(1:NSIZES); the value of each element NN(j) specifies one size.
The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
Currently, the list of possible types is:

(1)  ( 0, 0 )         (a pair of zero matrices)

(2)  ( I, 0 )         (an identity and a zero matrix)

(3)  ( 0, I )         (an identity and a zero matrix)

(4)  ( I, I )         (a pair of identity matrices)

        t   t
(5)  ( J , J  )       (a pair of transposed Jordan blocks)

                                    t                ( I   0  )
(6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )
                                 ( 0   I  )          ( 0   J  )
                      and I is a k x k identity and J a (k+1)x(k+1)
                      Jordan block; k=(N-1)/2

(7)  ( D, I )         where D is P*D1, P is a random unitary diagonal
                      matrix (i.e., with random magnitude 1 entries
                      on the diagonal), and D1=diag( 0, 1,..., N-1 )
                      (i.e., a diagonal matrix with D1(1,1)=0,
                      D1(2,2)=1, ..., D1(N,N)=N-1.)
(8)  ( I, D )

(9)  ( big*D, small*I ) where "big" is near overflow and small=1/big

(10) ( small*D, big*I )

(11) ( big*I, small*D )

(12) ( small*I, big*D )

(13) ( big*D, big*I )

(14) ( small*D, small*I )

(15) ( D1, D2 )        where D1=P*diag( 0, 0, 1, ..., N-3, 0 ) and
                       D2=Q*diag( 0, N-3, N-4,..., 1, 0, 0 ), and
                       P and Q are random unitary diagonal matrices.
          t   t
(16) U ( J , J ) V     where U and V are random unitary matrices.

(17) U ( T1, T2 ) V    where T1 and T2 are upper triangular matrices
                       with random O(1) entries above the diagonal
                       and diagonal entries diag(T1) =
                       P*( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
                       Q*( 0, N-3, N-4,..., 1, 0, 0 )

(18) U ( T1, T2 ) V    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
                       diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
                       s = machine precision.

(19) U ( T1, T2 ) V    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
                       diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )

                                                       N-5
(20) U ( T1, T2 ) V    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )
                       diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )

(21) U ( T1, T2 ) V    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
                       diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
                       where r1,..., r(N-4) are random.

(22) U ( big*T1, small*T2 ) V   diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
                                diag(T2) = ( 0, 1, ..., 1, 0, 0 )

(23) U ( small*T1, big*T2 ) V   diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
                                diag(T2) = ( 0, 1, ..., 1, 0, 0 )

(24) U ( small*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
                                diag(T2) = ( 0, 1, ..., 1, 0, 0 )

(25) U ( big*T1, big*T2 ) V     diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
                                diag(T2) = ( 0, 1, ..., 1, 0, 0 )

(26) U ( T1, T2 ) V     where T1 and T2 are random upper-triangular
                        matrices.

Arguments

NSIZES
(input) INTEGER
The number of sizes of matrices to use.  If it is zero,
ZCHKGG does nothing.  It must be at least zero.
NN
(input) INTEGER array, dimension (NSIZES)
An array containing the sizes to be used for the matrices.
Zero values will be skipped.  The values must be at least
zero.
NTYPES
(input) INTEGER
The number of elements in DOTYPE.   If it is zero, ZCHKGG
does nothing.  It must be at least zero.  If it is MAXTYP+1
and NSIZES is 1, then an additional type, MAXTYP+1 is
defined, which is to use whatever matrix is in A.  This
is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
DOTYPE(MAXTYP+1) is .TRUE. .
DOTYPE
(input) LOGICAL array, dimension (NTYPES)
If DOTYPE(j) is .TRUE., then for each size in NN a
matrix of that size and of type j will be generated.
If NTYPES is smaller than the maximum number of types
defined (PARAMETER MAXTYP), then types NTYPES+1 through
MAXTYP will not be generated.  If NTYPES is larger
than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
will be ignored.
ISEED
(input/output) INTEGER array, dimension (4)
On entry ISEED specifies the seed of the random number
generator. The array elements should be between 0 and 4095;
if not they will be reduced mod 4096.  Also, ISEED(4) must
be odd.  The random number generator uses a linear
congruential sequence limited to small integers, and so
should produce machine independent random numbers. The
values of ISEED are changed on exit, and can be used in the
next call to ZCHKGG to continue the same random number
sequence.
THRESH
(input) DOUBLE PRECISION
A test will count as "failed" if the "error", computed as
described above, exceeds THRESH.  Note that the error
is scaled to be O(1), so THRESH should be a reasonably
small multiple of 1, e.g., 10 or 100.  In particular,
it should not depend on the precision (single vs. double)
or the size of the matrix.  It must be at least zero.
TSTDIF
(input) LOGICAL
Specifies whether test ratios 13-15 will be computed and
compared with THRESH.
= .FALSE.: Only test ratios 1-12 will be computed and tested.
           Ratios 13-15 will be set to zero.
= .TRUE.:  All the test ratios 1-15 will be computed and
           tested.
THRSHN
(input) DOUBLE PRECISION
Threshhold for reporting eigenvector normalization error.
If the normalization of any eigenvector differs from 1 by
more than THRSHN*ulp, then a special error message will be
printed.  (This is handled separately from the other tests,
since only a compiler or programming error should cause an
error message, at least if THRSHN is at least 5--10.)
NOUNIT
(input) INTEGER
The FORTRAN unit number for printing out error messages
(e.g., if a routine returns IINFO not equal to 0.)
A
(input/workspace) COMPLEX*16 array, dimension (LDA, max(NN))
Used to hold the original A matrix.  Used as input only
if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
DOTYPE(MAXTYP+1)=.TRUE.
LDA
(input) INTEGER
The leading dimension of A, B, H, T, S1, P1, S2, and P2.
It must be at least 1 and at least max( NN ).
B
(input/workspace) COMPLEX*16 array, dimension (LDA, max(NN))
Used to hold the original B matrix.  Used as input only
if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
DOTYPE(MAXTYP+1)=.TRUE.
H
(workspace) COMPLEX*16 array, dimension (LDA, max(NN))
The upper Hessenberg matrix computed from A by ZGGHRD.
T
(workspace) COMPLEX*16 array, dimension (LDA, max(NN))
The upper triangular matrix computed from B by ZGGHRD.
S1
(workspace) COMPLEX*16 array, dimension (LDA, max(NN))
The Schur (upper triangular) matrix computed from H by ZHGEQZ
when Q and Z are also computed.
S2
(workspace) COMPLEX*16 array, dimension (LDA, max(NN))
The Schur (upper triangular) matrix computed from H by ZHGEQZ
when Q and Z are not computed.
P1
(workspace) COMPLEX*16 array, dimension (LDA, max(NN))
The upper triangular matrix computed from T by ZHGEQZ
when Q and Z are also computed.
P2
(workspace) COMPLEX*16 array, dimension (LDA, max(NN))
The upper triangular matrix computed from T by ZHGEQZ
when Q and Z are not computed.
U
(workspace) COMPLEX*16 array, dimension (LDU, max(NN))
The (left) unitary matrix computed by ZGGHRD.
LDU
(input) INTEGER
The leading dimension of U, V, Q, Z, EVECTL, and EVEZTR.  It
must be at least 1 and at least max( NN ).
V
(workspace) COMPLEX*16 array, dimension (LDU, max(NN))
The (right) unitary matrix computed by ZGGHRD.
Q
(workspace) COMPLEX*16 array, dimension (LDU, max(NN))
The (left) unitary matrix computed by ZHGEQZ.
Z
(workspace) COMPLEX*16 array, dimension (LDU, max(NN))
The (left) unitary matrix computed by ZHGEQZ.
ALPHA1
(workspace) COMPLEX*16 array, dimension (max(NN))
BETA1
(workspace) COMPLEX*16 array, dimension (max(NN))
The generalized eigenvalues of (A,B) computed by ZHGEQZ
when Q, Z, and the full Schur matrices are computed.
ALPHA3
(workspace) COMPLEX*16 array, dimension (max(NN))
BETA3
(workspace) COMPLEX*16 array, dimension (max(NN))
The generalized eigenvalues of (A,B) computed by ZHGEQZ
when neither Q, Z, nor the Schur matrices are computed.
EVECTL
(workspace) COMPLEX*16 array, dimension (LDU, max(NN))
The (lower triangular) left eigenvector matrix for the
matrices in S1 and P1.
EVEZTR
(workspace) COMPLEX*16 array, dimension (LDU, max(NN))
The (upper triangular) right eigenvector matrix for the
matrices in S1 and P1.
WORK
(workspace) COMPLEX*16 array, dimension (LWORK)
LWORK
(input) INTEGER
The number of entries in WORK.  This must be at least
max( 4*N, 2 * N**2, 1 ), for all N=NN(j).
RWORK
(workspace) DOUBLE PRECISION array, dimension (2*max(NN))
LLWORK
(workspace) LOGICAL array, dimension (max(NN))
RESULT
(output) DOUBLE PRECISION array, dimension (15)
The values computed by the tests described above.
The values are currently limited to 1/ulp, to avoid
overflow.
INFO
(output) INTEGER
= 0:  successful exit.
< 0:  if INFO = -i, the i-th argument had an illegal value.
> 0:  A routine returned an error code.  INFO is the
      absolute value of the INFO value returned.

Call Graph

Caller Graph