ZLARFY
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
November 2006
Purpose
ZLARFY applies an elementary reflector, or Householder matrix, H,
to an n x n Hermitian matrix C, from both the left and the right.
H is represented in the form
H = I - tau * v * v'
where tau is a scalar and v is a vector.
If tau is zero, then H is taken to be the unit matrix.
to an n x n Hermitian matrix C, from both the left and the right.
H is represented in the form
H = I - tau * v * v'
where tau is a scalar and v is a vector.
If tau is zero, then H is taken to be the unit matrix.
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
Specifies whether the upper or lower triangular part of the 
Hermitian matrix C is stored. = 'U': Upper triangle = 'L': Lower triangle  | 
| N | 
 
(input) INTEGER
 
The number of rows and columns of the matrix C.  N >= 0. 
 | 
| V | 
 
(input) COMPLEX*16 array, dimension
 
        (1 + (N-1)*abs(INCV)) 
The vector v as described above.  | 
| INCV | 
 
(input) INTEGER
 
The increment between successive elements of v.  INCV must 
not be zero.  | 
| TAU | 
 
(input) COMPLEX*16
 
The value tau as described above. 
 | 
| C | 
 
(input/output) COMPLEX*16 array, dimension (LDC, N)
 
On entry, the matrix C. 
On exit, C is overwritten by H * C * H'.  | 
| LDC | 
 
(input) INTEGER
 
The leading dimension of the array C.  LDC >= max( 1, N ). 
 | 
| WORK | 
 
(workspace) COMPLEX*16 array, dimension (N)
 
 |