1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
SUBROUTINE CGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
$ LDWORK, RWORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDWORK, N REAL RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL RWORK( * ) COMPLEX D( * ), DF( * ), DL( * ), DLF( * ), DU( * ), $ DU2( * ), DUF( * ), WORK( LDWORK, * ) * .. * * Purpose * ======= * * CGTT01 reconstructs a tridiagonal matrix A from its LU factorization * and computes the residual * norm(L*U - A) / ( norm(A) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========= * * N (input) INTEGTER * The order of the matrix A. N >= 0. * * DL (input) COMPLEX array, dimension (N-1) * The (n-1) sub-diagonal elements of A. * * D (input) COMPLEX array, dimension (N) * The diagonal elements of A. * * DU (input) COMPLEX array, dimension (N-1) * The (n-1) super-diagonal elements of A. * * DLF (input) COMPLEX array, dimension (N-1) * The (n-1) multipliers that define the matrix L from the * LU factorization of A. * * DF (input) COMPLEX array, dimension (N) * The n diagonal elements of the upper triangular matrix U from * the LU factorization of A. * * DUF (input) COMPLEX array, dimension (N-1) * The (n-1) elements of the first super-diagonal of U. * * DU2 (input) COMPLEX array, dimension (N-2) * The (n-2) elements of the second super-diagonal of U. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices; for 1 <= i <= n, row i of the matrix was * interchanged with row IPIV(i). IPIV(i) will always be either * i or i+1; IPIV(i) = i indicates a row interchange was not * required. * * WORK (workspace) COMPLEX array, dimension (LDWORK,N) * * LDWORK (input) INTEGER * The leading dimension of the array WORK. LDWORK >= max(1,N). * * RWORK (workspace) REAL array, dimension (N) * * RESID (output) REAL * The scaled residual: norm(L*U - A) / (norm(A) * EPS) * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I, IP, J, LASTJ REAL ANORM, EPS COMPLEX LI * .. * .. External Functions .. REAL CLANGT, CLANHS, SLAMCH EXTERNAL CLANGT, CLANHS, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC MIN * .. * .. External Subroutines .. EXTERNAL CAXPY, CSWAP * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * EPS = SLAMCH( 'Epsilon' ) * * Copy the matrix U to WORK. * DO 20 J = 1, N DO 10 I = 1, N WORK( I, J ) = ZERO 10 CONTINUE 20 CONTINUE DO 30 I = 1, N IF( I.EQ.1 ) THEN WORK( I, I ) = DF( I ) IF( N.GE.2 ) $ WORK( I, I+1 ) = DUF( I ) IF( N.GE.3 ) $ WORK( I, I+2 ) = DU2( I ) ELSE IF( I.EQ.N ) THEN WORK( I, I ) = DF( I ) ELSE WORK( I, I ) = DF( I ) WORK( I, I+1 ) = DUF( I ) IF( I.LT.N-1 ) $ WORK( I, I+2 ) = DU2( I ) END IF 30 CONTINUE * * Multiply on the left by L. * LASTJ = N DO 40 I = N - 1, 1, -1 LI = DLF( I ) CALL CAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK, $ WORK( I+1, I ), LDWORK ) IP = IPIV( I ) IF( IP.EQ.I ) THEN LASTJ = MIN( I+2, N ) ELSE CALL CSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ), $ LDWORK ) END IF 40 CONTINUE * * Subtract the matrix A. * WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 ) IF( N.GT.1 ) THEN WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 ) WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 ) WORK( N, N ) = WORK( N, N ) - D( N ) DO 50 I = 2, N - 1 WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 ) WORK( I, I ) = WORK( I, I ) - D( I ) WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I ) 50 CONTINUE END IF * * Compute the 1-norm of the tridiagonal matrix A. * ANORM = CLANGT( '1', N, DL, D, DU ) * * Compute the 1-norm of WORK, which is only guaranteed to be * upper Hessenberg. * RESID = CLANHS( '1', N, WORK, LDWORK, RWORK ) * * Compute norm(L*U - A) / (norm(A) * EPS) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( RESID / ANORM ) / EPS END IF * RETURN * * End of CGTT01 * END |