1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
SUBROUTINE CHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDC, N REAL RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL RWORK( * ) COMPLEX A( * ), AFAC( * ), C( LDC, * ) * .. * * Purpose * ======= * * CHPT01 reconstructs a Hermitian indefinite packed matrix A from its * block L*D*L' or U*D*U' factorization and computes the residual * norm( C - A ) / ( N * norm(A) * EPS ), * where C is the reconstructed matrix, EPS is the machine epsilon, * L' is the conjugate transpose of L, and U' is the conjugate transpose * of U. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) COMPLEX array, dimension (N*(N+1)/2) * The original Hermitian matrix A, stored as a packed * triangular matrix. * * AFAC (input) COMPLEX array, dimension (N*(N+1)/2) * The factored form of the matrix A, stored as a packed * triangular matrix. AFAC contains the block diagonal matrix D * and the multipliers used to obtain the factor L or U from the * block L*D*L' or U*D*U' factorization as computed by CHPTRF. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from CHPTRF. * * C (workspace) COMPLEX array, dimension (LDC,N) * * LDC (integer) INTEGER * The leading dimension of the array C. LDC >= max(1,N). * * RWORK (workspace) REAL array, dimension (N) * * RESID (output) REAL * If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, J, JC REAL ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME REAL CLANHE, CLANHP, SLAMCH EXTERNAL LSAME, CLANHE, CLANHP, SLAMCH * .. * .. External Subroutines .. EXTERNAL CLAVHP, CLASET * .. * .. Intrinsic Functions .. INTRINSIC AIMAG, REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Determine EPS and the norm of A. * EPS = SLAMCH( 'Epsilon' ) ANORM = CLANHP( '1', UPLO, N, A, RWORK ) * * Check the imaginary parts of the diagonal elements and return with * an error code if any are nonzero. * JC = 1 IF( LSAME( UPLO, 'U' ) ) THEN DO 10 J = 1, N IF( AIMAG( AFAC( JC ) ).NE.ZERO ) THEN RESID = ONE / EPS RETURN END IF JC = JC + J + 1 10 CONTINUE ELSE DO 20 J = 1, N IF( AIMAG( AFAC( JC ) ).NE.ZERO ) THEN RESID = ONE / EPS RETURN END IF JC = JC + N - J + 1 20 CONTINUE END IF * * Initialize C to the identity matrix. * CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC ) * * Call CLAVHP to form the product D * U' (or D * L' ). * CALL CLAVHP( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, IPIV, C, $ LDC, INFO ) * * Call CLAVHP again to multiply by U ( or L ). * CALL CLAVHP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C, $ LDC, INFO ) * * Compute the difference C - A . * IF( LSAME( UPLO, 'U' ) ) THEN JC = 0 DO 40 J = 1, N DO 30 I = 1, J - 1 C( I, J ) = C( I, J ) - A( JC+I ) 30 CONTINUE C( J, J ) = C( J, J ) - REAL( A( JC+J ) ) JC = JC + J 40 CONTINUE ELSE JC = 1 DO 60 J = 1, N C( J, J ) = C( J, J ) - REAL( A( JC ) ) DO 50 I = J + 1, N C( I, J ) = C( I, J ) - A( JC+I-J ) 50 CONTINUE JC = JC + N - J + 1 60 CONTINUE END IF * * Compute norm( C - A ) / ( N * norm(A) * EPS ) * RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS END IF * RETURN * * End of CHPT01 * END |