1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
$ LDB ) * * -- LAPACK auxiliary routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDB, LDX, N, NRHS REAL ALPHA, BETA * .. * .. Array Arguments .. REAL D( * ) COMPLEX B( LDB, * ), E( * ), X( LDX, * ) * .. * * Purpose * ======= * * CLAPTM multiplies an N by NRHS matrix X by a Hermitian tridiagonal * matrix A and stores the result in a matrix B. The operation has the * form * * B := alpha * A * X + beta * B * * where alpha may be either 1. or -1. and beta may be 0., 1., or -1. * * Arguments * ========= * * UPLO (input) CHARACTER * Specifies whether the superdiagonal or the subdiagonal of the * tridiagonal matrix A is stored. * = 'U': Upper, E is the superdiagonal of A. * = 'L': Lower, E is the subdiagonal of A. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices X and B. * * ALPHA (input) REAL * The scalar alpha. ALPHA must be 1. or -1.; otherwise, * it is assumed to be 0. * * D (input) REAL array, dimension (N) * The n diagonal elements of the tridiagonal matrix A. * * E (input) COMPLEX array, dimension (N-1) * The (n-1) subdiagonal or superdiagonal elements of A. * * X (input) COMPLEX array, dimension (LDX,NRHS) * The N by NRHS matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(N,1). * * BETA (input) REAL * The scalar beta. BETA must be 0., 1., or -1.; otherwise, * it is assumed to be 1. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the N by NRHS matrix B. * On exit, B is overwritten by the matrix expression * B := alpha * A * X + beta * B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(N,1). * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC CONJG * .. * .. Executable Statements .. * IF( N.EQ.0 ) $ RETURN * IF( BETA.EQ.ZERO ) THEN DO 20 J = 1, NRHS DO 10 I = 1, N B( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE IF( BETA.EQ.-ONE ) THEN DO 40 J = 1, NRHS DO 30 I = 1, N B( I, J ) = -B( I, J ) 30 CONTINUE 40 CONTINUE END IF * IF( ALPHA.EQ.ONE ) THEN IF( LSAME( UPLO, 'U' ) ) THEN * * Compute B := B + A*X, where E is the superdiagonal of A. * DO 60 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) + $ E( 1 )*X( 2, J ) B( N, J ) = B( N, J ) + CONJG( E( N-1 ) )* $ X( N-1, J ) + D( N )*X( N, J ) DO 50 I = 2, N - 1 B( I, J ) = B( I, J ) + CONJG( E( I-1 ) )* $ X( I-1, J ) + D( I )*X( I, J ) + $ E( I )*X( I+1, J ) 50 CONTINUE END IF 60 CONTINUE ELSE * * Compute B := B + A*X, where E is the subdiagonal of A. * DO 80 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) + $ CONJG( E( 1 ) )*X( 2, J ) B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) + $ D( N )*X( N, J ) DO 70 I = 2, N - 1 B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) + $ D( I )*X( I, J ) + $ CONJG( E( I ) )*X( I+1, J ) 70 CONTINUE END IF 80 CONTINUE END IF ELSE IF( ALPHA.EQ.-ONE ) THEN IF( LSAME( UPLO, 'U' ) ) THEN * * Compute B := B - A*X, where E is the superdiagonal of A. * DO 100 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) - $ E( 1 )*X( 2, J ) B( N, J ) = B( N, J ) - CONJG( E( N-1 ) )* $ X( N-1, J ) - D( N )*X( N, J ) DO 90 I = 2, N - 1 B( I, J ) = B( I, J ) - CONJG( E( I-1 ) )* $ X( I-1, J ) - D( I )*X( I, J ) - $ E( I )*X( I+1, J ) 90 CONTINUE END IF 100 CONTINUE ELSE * * Compute B := B - A*X, where E is the subdiagonal of A. * DO 120 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) - $ CONJG( E( 1 ) )*X( 2, J ) B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) - $ D( N )*X( N, J ) DO 110 I = 2, N - 1 B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) - $ D( I )*X( I, J ) - $ CONJG( E( I ) )*X( I+1, J ) 110 CONTINUE END IF 120 CONTINUE END IF END IF RETURN * * End of CLAPTM * END |