1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
SUBROUTINE CLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LWORK, M, N * .. * .. Array Arguments .. REAL RESULT( * ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ), $ Q( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * Purpose * ======= * * CLQT01 tests CGELQF, which computes the LQ factorization of an m-by-n * matrix A, and partially tests CUNGLQ which forms the n-by-n * orthogonal matrix Q. * * CLQT01 compares L with A*Q', and checks that Q is orthogonal. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input) COMPLEX array, dimension (LDA,N) * The m-by-n matrix A. * * AF (output) COMPLEX array, dimension (LDA,N) * Details of the LQ factorization of A, as returned by CGELQF. * See CGELQF for further details. * * Q (output) COMPLEX array, dimension (LDA,N) * The n-by-n orthogonal matrix Q. * * L (workspace) COMPLEX array, dimension (LDA,max(M,N)) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF, Q and L. * LDA >= max(M,N). * * TAU (output) COMPLEX array, dimension (min(M,N)) * The scalar factors of the elementary reflectors, as returned * by CGELQF. * * WORK (workspace) COMPLEX array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * * RWORK (workspace) REAL array, dimension (max(M,N)) * * RESULT (output) REAL array, dimension (2) * The test ratios: * RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) * RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) ) * .. * .. Local Scalars .. INTEGER INFO, MINMN REAL ANORM, EPS, RESID * .. * .. External Functions .. REAL CLANGE, CLANSY, SLAMCH EXTERNAL CLANGE, CLANSY, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGELQF, CGEMM, CHERK, CLACPY, CLASET, CUNGLQ * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, MIN, REAL * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * MINMN = MIN( M, N ) EPS = SLAMCH( 'Epsilon' ) * * Copy the matrix A to the array AF. * CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA ) * * Factorize the matrix A in the array AF. * SRNAMT = 'CGELQF' CALL CGELQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO ) * * Copy details of Q * CALL CLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA ) IF( N.GT.1 ) $ CALL CLACPY( 'Upper', M, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA ) * * Generate the n-by-n matrix Q * SRNAMT = 'CUNGLQ' CALL CUNGLQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO ) * * Copy L * CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), L, LDA ) CALL CLACPY( 'Lower', M, N, AF, LDA, L, LDA ) * * Compute L - A*Q' * CALL CGEMM( 'No transpose', 'Conjugate transpose', M, N, N, $ CMPLX( -ONE ), A, LDA, Q, LDA, CMPLX( ONE ), L, LDA ) * * Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) . * ANORM = CLANGE( '1', M, N, A, LDA, RWORK ) RESID = CLANGE( '1', M, N, L, LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS ELSE RESULT( 1 ) = ZERO END IF * * Compute I - Q*Q' * CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), L, LDA ) CALL CHERK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, L, $ LDA ) * * Compute norm( I - Q*Q' ) / ( N * EPS ) . * RESID = CLANSY( '1', 'Upper', N, L, LDA, RWORK ) * RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS * RETURN * * End of CLQT01 * END |