1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
SUBROUTINE CPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDAFAC, N REAL RESID * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), AFAC( LDAFAC, * ) * .. * * Purpose * ======= * * CPOT01 reconstructs a Hermitian positive definite matrix A from * its L*L' or U'*U factorization and computes the residual * norm( L*L' - A ) / ( N * norm(A) * EPS ) or * norm( U'*U - A ) / ( N * norm(A) * EPS ), * where EPS is the machine epsilon, L' is the conjugate transpose of L, * and U' is the conjugate transpose of U. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) COMPLEX array, dimension (LDA,N) * The original Hermitian matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N) * * AFAC (input/output) COMPLEX array, dimension (LDAFAC,N) * On entry, the factor L or U from the L*L' or U'*U * factorization of A. * Overwritten with the reconstructed matrix, and then with the * difference L*L' - A (or U'*U - A). * * LDAFAC (input) INTEGER * The leading dimension of the array AFAC. LDAFAC >= max(1,N). * * RWORK (workspace) REAL array, dimension (N) * * RESID (output) REAL * If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J, K REAL ANORM, EPS, TR COMPLEX TC * .. * .. External Functions .. LOGICAL LSAME REAL CLANHE, SLAMCH COMPLEX CDOTC EXTERNAL LSAME, CLANHE, SLAMCH, CDOTC * .. * .. External Subroutines .. EXTERNAL CHER, CSCAL, CTRMV * .. * .. Intrinsic Functions .. INTRINSIC AIMAG, REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Check the imaginary parts of the diagonal elements and return with * an error code if any are nonzero. * DO 10 J = 1, N IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN RESID = ONE / EPS RETURN END IF 10 CONTINUE * * Compute the product U'*U, overwriting U. * IF( LSAME( UPLO, 'U' ) ) THEN DO 20 K = N, 1, -1 * * Compute the (K,K) element of the result. * TR = CDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) AFAC( K, K ) = TR * * Compute the rest of column K. * CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC, $ LDAFAC, AFAC( 1, K ), 1 ) * 20 CONTINUE * * Compute the product L*L', overwriting L. * ELSE DO 30 K = N, 1, -1 * * Add a multiple of column K of the factor L to each of * columns K+1 through N. * IF( K+1.LE.N ) $ CALL CHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1, $ AFAC( K+1, K+1 ), LDAFAC ) * * Scale column K by the diagonal element. * TC = AFAC( K, K ) CALL CSCAL( N-K+1, TC, AFAC( K, K ), 1 ) * 30 CONTINUE END IF * * Compute the difference L*L' - A (or U'*U - A). * IF( LSAME( UPLO, 'U' ) ) THEN DO 50 J = 1, N DO 40 I = 1, J - 1 AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 40 CONTINUE AFAC( J, J ) = AFAC( J, J ) - REAL( A( J, J ) ) 50 CONTINUE ELSE DO 70 J = 1, N AFAC( J, J ) = AFAC( J, J ) - REAL( A( J, J ) ) DO 60 I = J + 1, N AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 60 CONTINUE 70 CONTINUE END IF * * Compute norm( L*U - A ) / ( N * norm(A) * EPS ) * RESID = CLANHE( '1', UPLO, N, AFAC, LDAFAC, RWORK ) * RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS * RETURN * * End of CPOT01 * END |