1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
SUBROUTINE CPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
$ RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDWORK, N REAL RCOND, RESID * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( * ), AINV( * ), WORK( LDWORK, * ) * .. * * Purpose * ======= * * CPPT03 computes the residual for a Hermitian packed matrix times its * inverse: * norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) COMPLEX array, dimension (N*(N+1)/2) * The original Hermitian matrix A, stored as a packed * triangular matrix. * * AINV (input) COMPLEX array, dimension (N*(N+1)/2) * The (Hermitian) inverse of the matrix A, stored as a packed * triangular matrix. * * WORK (workspace) COMPLEX array, dimension (LDWORK,N) * * LDWORK (input) INTEGER * The leading dimension of the array WORK. LDWORK >= max(1,N). * * RWORK (workspace) REAL array, dimension (N) * * RCOND (output) REAL * The reciprocal of the condition number of A, computed as * ( 1/norm(A) ) / norm(AINV). * * RESID (output) REAL * norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, J, JJ REAL AINVNM, ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME REAL CLANGE, CLANHP, SLAMCH EXTERNAL LSAME, CLANGE, CLANHP, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC CONJG, REAL * .. * .. External Subroutines .. EXTERNAL CCOPY, CHPMV * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RCOND = ONE RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = CLANHP( '1', UPLO, N, A, RWORK ) AINVNM = CLANHP( '1', UPLO, N, AINV, RWORK ) IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCOND = ZERO RESID = ONE / EPS RETURN END IF RCOND = ( ONE/ANORM ) / AINVNM * * UPLO = 'U': * Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and * expand it to a full matrix, then multiply by A one column at a * time, moving the result one column to the left. * IF( LSAME( UPLO, 'U' ) ) THEN * * Copy AINV * JJ = 1 DO 20 J = 1, N - 1 CALL CCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 ) DO 10 I = 1, J - 1 WORK( J, I+1 ) = CONJG( AINV( JJ+I-1 ) ) 10 CONTINUE JJ = JJ + J 20 CONTINUE JJ = ( ( N-1 )*N ) / 2 + 1 DO 30 I = 1, N - 1 WORK( N, I+1 ) = CONJG( AINV( JJ+I-1 ) ) 30 CONTINUE * * Multiply by A * DO 40 J = 1, N - 1 CALL CHPMV( 'Upper', N, -CONE, A, WORK( 1, J+1 ), 1, CZERO, $ WORK( 1, J ), 1 ) 40 CONTINUE CALL CHPMV( 'Upper', N, -CONE, A, AINV( JJ ), 1, CZERO, $ WORK( 1, N ), 1 ) * * UPLO = 'L': * Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1) * and multiply by A, moving each column to the right. * ELSE * * Copy AINV * DO 50 I = 1, N - 1 WORK( 1, I ) = CONJG( AINV( I+1 ) ) 50 CONTINUE JJ = N + 1 DO 70 J = 2, N CALL CCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 ) DO 60 I = 1, N - J WORK( J, J+I-1 ) = CONJG( AINV( JJ+I ) ) 60 CONTINUE JJ = JJ + N - J + 1 70 CONTINUE * * Multiply by A * DO 80 J = N, 2, -1 CALL CHPMV( 'Lower', N, -CONE, A, WORK( 1, J-1 ), 1, CZERO, $ WORK( 1, J ), 1 ) 80 CONTINUE CALL CHPMV( 'Lower', N, -CONE, A, AINV( 1 ), 1, CZERO, $ WORK( 1, 1 ), 1 ) * END IF * * Add the identity matrix to WORK . * DO 90 I = 1, N WORK( I, I ) = WORK( I, I ) + CONE 90 CONTINUE * * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) * RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK ) * RESID = ( ( RESID*RCOND )/EPS ) / REAL( N ) * RETURN * * End of CPPT03 * END |