1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
SUBROUTINE CQLT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL RESULT( * ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ), $ Q( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * Purpose * ======= * * CQLT02 tests CUNGQL, which generates an m-by-n matrix Q with * orthonornmal columns that is defined as the product of k elementary * reflectors. * * Given the QL factorization of an m-by-n matrix A, CQLT02 generates * the orthogonal matrix Q defined by the factorization of the last k * columns of A; it compares L(m-n+1:m,n-k+1:n) with * Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are * orthonormal. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix Q to be generated. M >= 0. * * N (input) INTEGER * The number of columns of the matrix Q to be generated. * M >= N >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines the * matrix Q. N >= K >= 0. * * A (input) COMPLEX array, dimension (LDA,N) * The m-by-n matrix A which was factorized by CQLT01. * * AF (input) COMPLEX array, dimension (LDA,N) * Details of the QL factorization of A, as returned by CGEQLF. * See CGEQLF for further details. * * Q (workspace) COMPLEX array, dimension (LDA,N) * * L (workspace) COMPLEX array, dimension (LDA,N) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF, Q and L. LDA >= M. * * TAU (input) COMPLEX array, dimension (N) * The scalar factors of the elementary reflectors corresponding * to the QL factorization in AF. * * WORK (workspace) COMPLEX array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * * RWORK (workspace) REAL array, dimension (M) * * RESULT (output) REAL array, dimension (2) * The test ratios: * RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) * RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, EPS, RESID * .. * .. External Functions .. REAL CLANGE, CLANSY, SLAMCH EXTERNAL CLANGE, CLANSY, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM, CHERK, CLACPY, CLASET, CUNGQL * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, REAL * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO RETURN END IF * EPS = SLAMCH( 'Epsilon' ) * * Copy the last k columns of the factorization to the array Q * CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA ) IF( K.LT.M ) $ CALL CLACPY( 'Full', M-K, K, AF( 1, N-K+1 ), LDA, $ Q( 1, N-K+1 ), LDA ) IF( K.GT.1 ) $ CALL CLACPY( 'Upper', K-1, K-1, AF( M-K+1, N-K+2 ), LDA, $ Q( M-K+1, N-K+2 ), LDA ) * * Generate the last n columns of the matrix Q * SRNAMT = 'CUNGQL' CALL CUNGQL( M, N, K, Q, LDA, TAU( N-K+1 ), WORK, LWORK, INFO ) * * Copy L(m-n+1:m,n-k+1:n) * CALL CLASET( 'Full', N, K, CMPLX( ZERO ), CMPLX( ZERO ), $ L( M-N+1, N-K+1 ), LDA ) CALL CLACPY( 'Lower', K, K, AF( M-K+1, N-K+1 ), LDA, $ L( M-K+1, N-K+1 ), LDA ) * * Compute L(m-n+1:m,n-k+1:n) - Q(1:m,m-n+1:m)' * A(1:m,n-k+1:n) * CALL CGEMM( 'Conjugate transpose', 'No transpose', N, K, M, $ CMPLX( -ONE ), Q, LDA, A( 1, N-K+1 ), LDA, $ CMPLX( ONE ), L( M-N+1, N-K+1 ), LDA ) * * Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . * ANORM = CLANGE( '1', M, K, A( 1, N-K+1 ), LDA, RWORK ) RESID = CLANGE( '1', N, K, L( M-N+1, N-K+1 ), LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS ELSE RESULT( 1 ) = ZERO END IF * * Compute I - Q'*Q * CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), L, LDA ) CALL CHERK( 'Upper', 'Conjugate transpose', N, M, -ONE, Q, LDA, $ ONE, L, LDA ) * * Compute norm( I - Q'*Q ) / ( M * EPS ) . * RESID = CLANSY( '1', 'Upper', N, L, LDA, RWORK ) * RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS * RETURN * * End of CQLT02 * END |