1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
SUBROUTINE CQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL RESULT( * ), RWORK( * ) COMPLEX AF( LDA, * ), C( LDA, * ), CC( LDA, * ), $ Q( LDA, * ), TAU( * ), WORK( LWORK ) * .. * * Purpose * ======= * * CQRT03 tests CUNMQR, which computes Q*C, Q'*C, C*Q or C*Q'. * * CQRT03 compares the results of a call to CUNMQR with the results of * forming Q explicitly by a call to CUNGQR and then performing matrix * multiplication by a call to CGEMM. * * Arguments * ========= * * M (input) INTEGER * The order of the orthogonal matrix Q. M >= 0. * * N (input) INTEGER * The number of rows or columns of the matrix C; C is m-by-n if * Q is applied from the left, or n-by-m if Q is applied from * the right. N >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines the * orthogonal matrix Q. M >= K >= 0. * * AF (input) COMPLEX array, dimension (LDA,N) * Details of the QR factorization of an m-by-n matrix, as * returnedby CGEQRF. See CGEQRF for further details. * * C (workspace) COMPLEX array, dimension (LDA,N) * * CC (workspace) COMPLEX array, dimension (LDA,N) * * Q (workspace) COMPLEX array, dimension (LDA,M) * * LDA (input) INTEGER * The leading dimension of the arrays AF, C, CC, and Q. * * TAU (input) COMPLEX array, dimension (min(M,N)) * The scalar factors of the elementary reflectors corresponding * to the QR factorization in AF. * * WORK (workspace) COMPLEX array, dimension (LWORK) * * LWORK (input) INTEGER * The length of WORK. LWORK must be at least M, and should be * M*NB, where NB is the blocksize for this environment. * * RWORK (workspace) REAL array, dimension (M) * * RESULT (output) REAL array, dimension (4) * The test ratios compare two techniques for multiplying a * random matrix C by an m-by-m orthogonal matrix Q. * RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS ) * RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS ) * RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS ) * RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) ) * .. * .. Local Scalars .. CHARACTER SIDE, TRANS INTEGER INFO, ISIDE, ITRANS, J, MC, NC REAL CNORM, EPS, RESID * .. * .. External Functions .. LOGICAL LSAME REAL CLANGE, SLAMCH EXTERNAL LSAME, CLANGE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM, CLACPY, CLARNV, CLASET, CUNGQR, CUNMQR * .. * .. Local Arrays .. INTEGER ISEED( 4 ) * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, REAL * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEED / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * EPS = SLAMCH( 'Epsilon' ) * * Copy the first k columns of the factorization to the array Q * CALL CLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA ) CALL CLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA ) * * Generate the m-by-m matrix Q * SRNAMT = 'CUNGQR' CALL CUNGQR( M, M, K, Q, LDA, TAU, WORK, LWORK, INFO ) * DO 30 ISIDE = 1, 2 IF( ISIDE.EQ.1 ) THEN SIDE = 'L' MC = M NC = N ELSE SIDE = 'R' MC = N NC = M END IF * * Generate MC by NC matrix C * DO 10 J = 1, NC CALL CLARNV( 2, ISEED, MC, C( 1, J ) ) 10 CONTINUE CNORM = CLANGE( '1', MC, NC, C, LDA, RWORK ) IF( CNORM.EQ.ZERO ) $ CNORM = ONE * DO 20 ITRANS = 1, 2 IF( ITRANS.EQ.1 ) THEN TRANS = 'N' ELSE TRANS = 'C' END IF * * Copy C * CALL CLACPY( 'Full', MC, NC, C, LDA, CC, LDA ) * * Apply Q or Q' to C * SRNAMT = 'CUNMQR' CALL CUNMQR( SIDE, TRANS, MC, NC, K, AF, LDA, TAU, CC, LDA, $ WORK, LWORK, INFO ) * * Form explicit product and subtract * IF( LSAME( SIDE, 'L' ) ) THEN CALL CGEMM( TRANS, 'No transpose', MC, NC, MC, $ CMPLX( -ONE ), Q, LDA, C, LDA, CMPLX( ONE ), $ CC, LDA ) ELSE CALL CGEMM( 'No transpose', TRANS, MC, NC, NC, $ CMPLX( -ONE ), C, LDA, Q, LDA, CMPLX( ONE ), $ CC, LDA ) END IF * * Compute error in the difference * RESID = CLANGE( '1', MC, NC, CC, LDA, RWORK ) RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID / $ ( REAL( MAX( 1, M ) )*CNORM*EPS ) * 20 CONTINUE 30 CONTINUE * RETURN * * End of CQRT03 * END |