1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
REAL FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
$ RWORK ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LWORK, M, N * .. * .. Array Arguments .. REAL RWORK( * ), S( * ) COMPLEX A( LDA, * ), WORK( LWORK ) * .. * * Purpose * ======= * * CQRT12 computes the singular values `svlues' of the upper trapezoid * of A(1:M,1:N) and returns the ratio * * || s - svlues||/(||svlues||*eps*max(M,N)) * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. * * N (input) INTEGER * The number of columns of the matrix A. * * A (input) COMPLEX array, dimension (LDA,N) * The M-by-N matrix A. Only the upper trapezoid is referenced. * * LDA (input) INTEGER * The leading dimension of the array A. * * S (input) REAL array, dimension (min(M,N)) * The singular values of the matrix A. * * WORK (workspace) COMPLEX array, dimension (LWORK) * * LWORK (input) INTEGER * The length of the array WORK. LWORK >= M*N + 2*min(M,N) + * max(M,N). * * RWORK (workspace) REAL array, dimension (4*min(M,N)) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. INTEGER I, INFO, ISCL, J, MN REAL ANRM, BIGNUM, NRMSVL, SMLNUM * .. * .. Local Arrays .. REAL DUMMY( 1 ) * .. * .. External Functions .. REAL CLANGE, SASUM, SLAMCH, SNRM2 EXTERNAL CLANGE, SASUM, SLAMCH, SNRM2 * .. * .. External Subroutines .. EXTERNAL CGEBD2, CLASCL, CLASET, SAXPY, SBDSQR, SLABAD, $ SLASCL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, MIN, REAL * .. * .. Executable Statements .. * CQRT12 = ZERO * * Test that enough workspace is supplied * IF( LWORK.LT.M*N+2*MIN( M, N )+MAX( M, N ) ) THEN CALL XERBLA( 'CQRT12', 7 ) RETURN END IF * * Quick return if possible * MN = MIN( M, N ) IF( MN.LE.ZERO ) $ RETURN * NRMSVL = SNRM2( MN, S, 1 ) * * Copy upper triangle of A into work * CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), WORK, M ) DO 20 J = 1, N DO 10 I = 1, MIN( J, M ) WORK( ( J-1 )*M+I ) = A( I, J ) 10 CONTINUE 20 CONTINUE * * Get machine parameters * SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) * * Scale work if max entry outside range [SMLNUM,BIGNUM] * ANRM = CLANGE( 'M', M, N, WORK, M, DUMMY ) ISCL = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN * * Scale matrix norm up to SMLNUM * CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, WORK, M, INFO ) ISCL = 1 ELSE IF( ANRM.GT.BIGNUM ) THEN * * Scale matrix norm down to BIGNUM * CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, WORK, M, INFO ) ISCL = 1 END IF * IF( ANRM.NE.ZERO ) THEN * * Compute SVD of work * CALL CGEBD2( M, N, WORK, M, RWORK( 1 ), RWORK( MN+1 ), $ WORK( M*N+1 ), WORK( M*N+MN+1 ), $ WORK( M*N+2*MN+1 ), INFO ) CALL SBDSQR( 'Upper', MN, 0, 0, 0, RWORK( 1 ), RWORK( MN+1 ), $ DUMMY, MN, DUMMY, 1, DUMMY, MN, RWORK( 2*MN+1 ), $ INFO ) * IF( ISCL.EQ.1 ) THEN IF( ANRM.GT.BIGNUM ) THEN CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MN, 1, RWORK( 1 ), $ MN, INFO ) END IF IF( ANRM.LT.SMLNUM ) THEN CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MN, 1, RWORK( 1 ), $ MN, INFO ) END IF END IF * ELSE * DO 30 I = 1, MN RWORK( I ) = ZERO 30 CONTINUE END IF * * Compare s and singular values of work * CALL SAXPY( MN, -ONE, S, 1, RWORK( 1 ), 1 ) CQRT12 = SASUM( MN, RWORK( 1 ), 1 ) / $ ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) ) IF( NRMSVL.NE.ZERO ) $ CQRT12 = CQRT12 / NRMSVL * RETURN * * End of CQRT12 * END |