1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
REAL FUNCTION CQRT14( TRANS, M, N, NRHS, A, LDA, X,
$ LDX, WORK, LWORK ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER LDA, LDX, LWORK, M, N, NRHS * .. * .. Array Arguments .. COMPLEX A( LDA, * ), WORK( LWORK ), X( LDX, * ) * .. * * Purpose * ======= * * CQRT14 checks whether X is in the row space of A or A'. It does so * by scaling both X and A such that their norms are in the range * [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X] * (if TRANS = 'C') or an LQ factorization of [A',X]' (if TRANS = 'N'), * and returning the norm of the trailing triangle, scaled by * MAX(M,N,NRHS)*eps. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * = 'N': No transpose, check for X in the row space of A * = 'C': Conjugate transpose, check for X in row space of A'. * * M (input) INTEGER * The number of rows of the matrix A. * * N (input) INTEGER * The number of columns of the matrix A. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of X. * * A (input) COMPLEX array, dimension (LDA,N) * The M-by-N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. * * X (input) COMPLEX array, dimension (LDX,NRHS) * If TRANS = 'N', the N-by-NRHS matrix X. * IF TRANS = 'C', the M-by-NRHS matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. * * WORK (workspace) COMPLEX array dimension (LWORK) * * LWORK (input) INTEGER * length of workspace array required * If TRANS = 'N', LWORK >= (M+NRHS)*(N+2); * if TRANS = 'C', LWORK >= (N+NRHS)*(M+2). * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL TPSD INTEGER I, INFO, J, LDWORK REAL ANRM, ERR, XNRM * .. * .. Local Arrays .. REAL RWORK( 1 ) * .. * .. External Functions .. LOGICAL LSAME REAL CLANGE, SLAMCH EXTERNAL LSAME, CLANGE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGELQ2, CGEQR2, CLACPY, CLASCL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX, MIN, REAL * .. * .. Executable Statements .. * CQRT14 = ZERO IF( LSAME( TRANS, 'N' ) ) THEN LDWORK = M + NRHS TPSD = .FALSE. IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN CALL XERBLA( 'CQRT14', 10 ) RETURN ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RETURN END IF ELSE IF( LSAME( TRANS, 'C' ) ) THEN LDWORK = M TPSD = .TRUE. IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN CALL XERBLA( 'CQRT14', 10 ) RETURN ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN RETURN END IF ELSE CALL XERBLA( 'CQRT14', 1 ) RETURN END IF * * Copy and scale A * CALL CLACPY( 'All', M, N, A, LDA, WORK, LDWORK ) ANRM = CLANGE( 'M', M, N, WORK, LDWORK, RWORK ) IF( ANRM.NE.ZERO ) $ CALL CLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO ) * * Copy X or X' into the right place and scale it * IF( TPSD ) THEN * * Copy X into columns n+1:n+nrhs of work * CALL CLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ), $ LDWORK ) XNRM = CLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK, $ RWORK ) IF( XNRM.NE.ZERO ) $ CALL CLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS, $ WORK( N*LDWORK+1 ), LDWORK, INFO ) ANRM = CLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK ) * * Compute QR factorization of X * CALL CGEQR2( M, N+NRHS, WORK, LDWORK, $ WORK( LDWORK*( N+NRHS )+1 ), $ WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ), $ INFO ) * * Compute largest entry in upper triangle of * work(n+1:m,n+1:n+nrhs) * ERR = ZERO DO 20 J = N + 1, N + NRHS DO 10 I = N + 1, MIN( M, J ) ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) ) 10 CONTINUE 20 CONTINUE * ELSE * * Copy X' into rows m+1:m+nrhs of work * DO 40 I = 1, N DO 30 J = 1, NRHS WORK( M+J+( I-1 )*LDWORK ) = CONJG( X( I, J ) ) 30 CONTINUE 40 CONTINUE * XNRM = CLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK ) IF( XNRM.NE.ZERO ) $ CALL CLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ), $ LDWORK, INFO ) * * Compute LQ factorization of work * CALL CGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ), $ WORK( LDWORK*( N+1 )+1 ), INFO ) * * Compute largest entry in lower triangle in * work(m+1:m+nrhs,m+1:n) * ERR = ZERO DO 60 J = M + 1, N DO 50 I = J, LDWORK ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) ) 50 CONTINUE 60 CONTINUE * END IF * CQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) )*SLAMCH( 'Epsilon' ) ) * RETURN * * End of CQRT14 * END |