1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
SUBROUTINE CQRT16( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
$ RWORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER LDA, LDB, LDX, M, N, NRHS REAL RESID * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * Purpose * ======= * * CQRT16 computes the residual for a solution of a system of linear * equations A*x = b or A'*x = b: * RESID = norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A *x = b * = 'T': A^T*x = b, where A^T is the transpose of A * = 'C': A^H*x = b, where A^H is the conjugate transpose of A * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of columns of B, the matrix of right hand sides. * NRHS >= 0. * * A (input) COMPLEX array, dimension (LDA,N) * The original M x N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * X (input) COMPLEX array, dimension (LDX,NRHS) * The computed solution vectors for the system of linear * equations. * * LDX (input) INTEGER * The leading dimension of the array X. If TRANS = 'N', * LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the right hand side vectors for the system of * linear equations. * On exit, B is overwritten with the difference B - A*X. * * LDB (input) INTEGER * The leading dimension of the array B. IF TRANS = 'N', * LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). * * RWORK (workspace) REAL array, dimension (M) * * RESID (output) REAL * The maximum over the number of right hand sides of * norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ). * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CONE PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER J, N1, N2 REAL ANORM, BNORM, EPS, XNORM * .. * .. External Functions .. LOGICAL LSAME REAL CLANGE, SCASUM, SLAMCH EXTERNAL LSAME, CLANGE, SCASUM, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Quick exit if M = 0 or N = 0 or NRHS = 0 * IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN RESID = ZERO RETURN END IF * IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN ANORM = CLANGE( 'I', M, N, A, LDA, RWORK ) N1 = N N2 = M ELSE ANORM = CLANGE( '1', M, N, A, LDA, RWORK ) N1 = M N2 = N END IF * EPS = SLAMCH( 'Epsilon' ) * * Compute B - A*X (or B - A'*X ) and store in B. * CALL CGEMM( TRANS, 'No transpose', N1, NRHS, N2, -CONE, A, LDA, X, $ LDX, CONE, B, LDB ) * * Compute the maximum over the number of right hand sides of * norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ) . * RESID = ZERO DO 10 J = 1, NRHS BNORM = SCASUM( N1, B( 1, J ), 1 ) XNORM = SCASUM( N2, X( 1, J ), 1 ) IF( ANORM.EQ.ZERO .AND. BNORM.EQ.ZERO ) THEN RESID = ZERO ELSE IF( ANORM.LE.ZERO .OR. XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / $ ( MAX( M, N )*EPS ) ) END IF 10 CONTINUE * RETURN * * End of CQRT16 * END |