1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
SUBROUTINE CSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
$ RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDW, N REAL RCOND, RESID * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( * ), AINV( * ), WORK( LDW, * ) * .. * * Purpose * ======= * * CSPT03 computes the residual for a complex symmetric packed matrix * times its inverse: * norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * complex symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) COMPLEX array, dimension (N*(N+1)/2) * The original complex symmetric matrix A, stored as a packed * triangular matrix. * * AINV (input) COMPLEX array, dimension (N*(N+1)/2) * The (symmetric) inverse of the matrix A, stored as a packed * triangular matrix. * * WORK (workspace) COMPLEX array, dimension (LDWORK,N) * * LDWORK (input) INTEGER * The leading dimension of the array WORK. LDWORK >= max(1,N). * * RWORK (workspace) REAL array, dimension (N) * * RCOND (output) REAL * The reciprocal of the condition number of A, computed as * ( 1/norm(A) ) / norm(AINV). * * RESID (output) REAL * norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, ICOL, J, JCOL, K, KCOL, NALL REAL AINVNM, ANORM, EPS COMPLEX T * .. * .. External Functions .. LOGICAL LSAME REAL CLANGE, CLANSP, SLAMCH COMPLEX CDOTU EXTERNAL LSAME, CLANGE, CLANSP, SLAMCH, CDOTU * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RCOND = ONE RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = CLANSP( '1', UPLO, N, A, RWORK ) AINVNM = CLANSP( '1', UPLO, N, AINV, RWORK ) IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCOND = ZERO RESID = ONE / EPS RETURN END IF RCOND = ( ONE/ANORM ) / AINVNM * * Case where both A and AINV are upper triangular: * Each element of - A * AINV is computed by taking the dot product * of a row of A with a column of AINV. * IF( LSAME( UPLO, 'U' ) ) THEN DO 70 I = 1, N ICOL = ( ( I-1 )*I ) / 2 + 1 * * Code when J <= I * DO 30 J = 1, I JCOL = ( ( J-1 )*J ) / 2 + 1 T = CDOTU( J, A( ICOL ), 1, AINV( JCOL ), 1 ) JCOL = JCOL + 2*J - 1 KCOL = ICOL - 1 DO 10 K = J + 1, I T = T + A( KCOL+K )*AINV( JCOL ) JCOL = JCOL + K 10 CONTINUE KCOL = KCOL + 2*I DO 20 K = I + 1, N T = T + A( KCOL )*AINV( JCOL ) KCOL = KCOL + K JCOL = JCOL + K 20 CONTINUE WORK( I, J ) = -T 30 CONTINUE * * Code when J > I * DO 60 J = I + 1, N JCOL = ( ( J-1 )*J ) / 2 + 1 T = CDOTU( I, A( ICOL ), 1, AINV( JCOL ), 1 ) JCOL = JCOL - 1 KCOL = ICOL + 2*I - 1 DO 40 K = I + 1, J T = T + A( KCOL )*AINV( JCOL+K ) KCOL = KCOL + K 40 CONTINUE JCOL = JCOL + 2*J DO 50 K = J + 1, N T = T + A( KCOL )*AINV( JCOL ) KCOL = KCOL + K JCOL = JCOL + K 50 CONTINUE WORK( I, J ) = -T 60 CONTINUE 70 CONTINUE ELSE * * Case where both A and AINV are lower triangular * NALL = ( N*( N+1 ) ) / 2 DO 140 I = 1, N * * Code when J <= I * ICOL = NALL - ( ( N-I+1 )*( N-I+2 ) ) / 2 + 1 DO 100 J = 1, I JCOL = NALL - ( ( N-J )*( N-J+1 ) ) / 2 - ( N-I ) T = CDOTU( N-I+1, A( ICOL ), 1, AINV( JCOL ), 1 ) KCOL = I JCOL = J DO 80 K = 1, J - 1 T = T + A( KCOL )*AINV( JCOL ) JCOL = JCOL + N - K KCOL = KCOL + N - K 80 CONTINUE JCOL = JCOL - J DO 90 K = J, I - 1 T = T + A( KCOL )*AINV( JCOL+K ) KCOL = KCOL + N - K 90 CONTINUE WORK( I, J ) = -T 100 CONTINUE * * Code when J > I * ICOL = NALL - ( ( N-I )*( N-I+1 ) ) / 2 DO 130 J = I + 1, N JCOL = NALL - ( ( N-J+1 )*( N-J+2 ) ) / 2 + 1 T = CDOTU( N-J+1, A( ICOL-N+J ), 1, AINV( JCOL ), 1 ) KCOL = I JCOL = J DO 110 K = 1, I - 1 T = T + A( KCOL )*AINV( JCOL ) JCOL = JCOL + N - K KCOL = KCOL + N - K 110 CONTINUE KCOL = KCOL - I DO 120 K = I, J - 1 T = T + A( KCOL+K )*AINV( JCOL ) JCOL = JCOL + N - K 120 CONTINUE WORK( I, J ) = -T 130 CONTINUE 140 CONTINUE END IF * * Add the identity matrix to WORK . * DO 150 I = 1, N WORK( I, I ) = WORK( I, I ) + ONE 150 CONTINUE * * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) * RESID = CLANGE( '1', N, N, WORK, LDW, RWORK ) * RESID = ( ( RESID*RCOND )/EPS ) / REAL( N ) * RETURN * * End of CSPT03 * END |