1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
SUBROUTINE DERRGT( PATH, NUNIT )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * Purpose * ======= * * DERRGT tests the error exits for the DOUBLE PRECISION tridiagonal * routines. * * Arguments * ========= * * PATH (input) CHARACTER*3 * The LAPACK path name for the routines to be tested. * * NUNIT (input) INTEGER * The unit number for output. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 2 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER INFO DOUBLE PRECISION ANORM, RCOND * .. * .. Local Arrays .. INTEGER IP( NMAX ), IW( NMAX ) DOUBLE PRECISION B( NMAX ), C( NMAX ), CF( NMAX ), D( NMAX ), $ DF( NMAX ), E( NMAX ), EF( NMAX ), F( NMAX ), $ R1( NMAX ), R2( NMAX ), W( NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, DGTCON, DGTRFS, DGTTRF, DGTTRS, $ DPTCON, DPTRFS, DPTTRF, DPTTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) D( 1 ) = 1.D0 D( 2 ) = 2.D0 DF( 1 ) = 1.D0 DF( 2 ) = 2.D0 E( 1 ) = 3.D0 E( 2 ) = 4.D0 EF( 1 ) = 3.D0 EF( 2 ) = 4.D0 ANORM = 1.0D0 OK = .TRUE. * IF( LSAMEN( 2, C2, 'GT' ) ) THEN * * Test error exits for the general tridiagonal routines. * * DGTTRF * SRNAMT = 'DGTTRF' INFOT = 1 CALL DGTTRF( -1, C, D, E, F, IP, INFO ) CALL CHKXER( 'DGTTRF', INFOT, NOUT, LERR, OK ) * * DGTTRS * SRNAMT = 'DGTTRS' INFOT = 1 CALL DGTTRS( '/', 0, 0, C, D, E, F, IP, X, 1, INFO ) CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DGTTRS( 'N', -1, 0, C, D, E, F, IP, X, 1, INFO ) CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DGTTRS( 'N', 0, -1, C, D, E, F, IP, X, 1, INFO ) CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DGTTRS( 'N', 2, 1, C, D, E, F, IP, X, 1, INFO ) CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK ) * * DGTRFS * SRNAMT = 'DGTRFS' INFOT = 1 CALL DGTRFS( '/', 0, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, 1, $ R1, R2, W, IW, INFO ) CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DGTRFS( 'N', -1, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, $ 1, R1, R2, W, IW, INFO ) CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DGTRFS( 'N', 0, -1, C, D, E, CF, DF, EF, F, IP, B, 1, X, $ 1, R1, R2, W, IW, INFO ) CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 1, X, 2, $ R1, R2, W, IW, INFO ) CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 2, X, 1, $ R1, R2, W, IW, INFO ) CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) * * DGTCON * SRNAMT = 'DGTCON' INFOT = 1 CALL DGTCON( '/', 0, C, D, E, F, IP, ANORM, RCOND, W, IW, $ INFO ) CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DGTCON( 'I', -1, C, D, E, F, IP, ANORM, RCOND, W, IW, $ INFO ) CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DGTCON( 'I', 0, C, D, E, F, IP, -ANORM, RCOND, W, IW, $ INFO ) CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN * * Test error exits for the positive definite tridiagonal * routines. * * DPTTRF * SRNAMT = 'DPTTRF' INFOT = 1 CALL DPTTRF( -1, D, E, INFO ) CALL CHKXER( 'DPTTRF', INFOT, NOUT, LERR, OK ) * * DPTTRS * SRNAMT = 'DPTTRS' INFOT = 1 CALL DPTTRS( -1, 0, D, E, X, 1, INFO ) CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPTTRS( 0, -1, D, E, X, 1, INFO ) CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DPTTRS( 2, 1, D, E, X, 1, INFO ) CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK ) * * DPTRFS * SRNAMT = 'DPTRFS' INFOT = 1 CALL DPTRFS( -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO ) CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DPTRFS( 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO ) CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DPTRFS( 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, INFO ) CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DPTRFS( 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, INFO ) CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK ) * * DPTCON * SRNAMT = 'DPTCON' INFOT = 1 CALL DPTCON( -1, D, E, ANORM, RCOND, W, INFO ) CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DPTCON( 0, D, E, -ANORM, RCOND, W, INFO ) CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of DERRGT * END |