1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
SUBROUTINE DGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
$ RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDAFAC, M, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * ) * .. * * Purpose * ======= * * DGET01 reconstructs a matrix A from its L*U factorization and * computes the residual * norm(L*U - A) / ( N * norm(A) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The original M x N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * AFAC (input/output) DOUBLE PRECISION array, dimension (LDAFAC,N) * The factored form of the matrix A. AFAC contains the factors * L and U from the L*U factorization as computed by DGETRF. * Overwritten with the reconstructed matrix, and then with the * difference L*U - A. * * LDAFAC (input) INTEGER * The leading dimension of the array AFAC. LDAFAC >= max(1,M). * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from DGETRF. * * RWORK (workspace) DOUBLE PRECISION array, dimension (M) * * RESID (output) DOUBLE PRECISION * norm(L*U - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J, K DOUBLE PRECISION ANORM, EPS, T * .. * .. External Functions .. DOUBLE PRECISION DDOT, DLAMCH, DLANGE EXTERNAL DDOT, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DGEMV, DLASWP, DSCAL, DTRMV * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MIN * .. * .. Executable Statements .. * * Quick exit if M = 0 or N = 0. * IF( M.LE.0 .OR. N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Determine EPS and the norm of A. * EPS = DLAMCH( 'Epsilon' ) ANORM = DLANGE( '1', M, N, A, LDA, RWORK ) * * Compute the product L*U and overwrite AFAC with the result. * A column at a time of the product is obtained, starting with * column N. * DO 10 K = N, 1, -1 IF( K.GT.M ) THEN CALL DTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC, $ LDAFAC, AFAC( 1, K ), 1 ) ELSE * * Compute elements (K+1:M,K) * T = AFAC( K, K ) IF( K+1.LE.M ) THEN CALL DSCAL( M-K, T, AFAC( K+1, K ), 1 ) CALL DGEMV( 'No transpose', M-K, K-1, ONE, $ AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1, ONE, $ AFAC( K+1, K ), 1 ) END IF * * Compute the (K,K) element * AFAC( K, K ) = T + DDOT( K-1, AFAC( K, 1 ), LDAFAC, $ AFAC( 1, K ), 1 ) * * Compute elements (1:K-1,K) * CALL DTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC, $ LDAFAC, AFAC( 1, K ), 1 ) END IF 10 CONTINUE CALL DLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 ) * * Compute the difference L*U - A and store in AFAC. * DO 30 J = 1, N DO 20 I = 1, M AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 20 CONTINUE 30 CONTINUE * * Compute norm( L*U - A ) / ( N * norm(A) * EPS ) * RESID = DLANGE( '1', M, N, AFAC, LDAFAC, RWORK ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS END IF * RETURN * * End of DGET01 * END |