1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
SUBROUTINE DLAPTM( N, NRHS, ALPHA, D, E, X, LDX, BETA, B, LDB )
* * -- LAPACK auxiliary routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDB, LDX, N, NRHS DOUBLE PRECISION ALPHA, BETA * .. * .. Array Arguments .. DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), X( LDX, * ) * .. * * Purpose * ======= * * DLAPTM multiplies an N by NRHS matrix X by a symmetric tridiagonal * matrix A and stores the result in a matrix B. The operation has the * form * * B := alpha * A * X + beta * B * * where alpha may be either 1. or -1. and beta may be 0., 1., or -1. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices X and B. * * ALPHA (input) DOUBLE PRECISION * The scalar alpha. ALPHA must be 1. or -1.; otherwise, * it is assumed to be 0. * * D (input) DOUBLE PRECISION array, dimension (N) * The n diagonal elements of the tridiagonal matrix A. * * E (input) DOUBLE PRECISION array, dimension (N-1) * The (n-1) subdiagonal or superdiagonal elements of A. * * X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) * The N by NRHS matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(N,1). * * BETA (input) DOUBLE PRECISION * The scalar beta. BETA must be 0., 1., or -1.; otherwise, * it is assumed to be 1. * * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) * On entry, the N by NRHS matrix B. * On exit, B is overwritten by the matrix expression * B := alpha * A * X + beta * B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(N,1). * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J * .. * .. Executable Statements .. * IF( N.EQ.0 ) $ RETURN * * Multiply B by BETA if BETA.NE.1. * IF( BETA.EQ.ZERO ) THEN DO 20 J = 1, NRHS DO 10 I = 1, N B( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE IF( BETA.EQ.-ONE ) THEN DO 40 J = 1, NRHS DO 30 I = 1, N B( I, J ) = -B( I, J ) 30 CONTINUE 40 CONTINUE END IF * IF( ALPHA.EQ.ONE ) THEN * * Compute B := B + A*X * DO 60 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) + $ E( 1 )*X( 2, J ) B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) + $ D( N )*X( N, J ) DO 50 I = 2, N - 1 B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) + $ D( I )*X( I, J ) + E( I )*X( I+1, J ) 50 CONTINUE END IF 60 CONTINUE ELSE IF( ALPHA.EQ.-ONE ) THEN * * Compute B := B - A*X * DO 80 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) - $ E( 1 )*X( 2, J ) B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) - $ D( N )*X( N, J ) DO 70 I = 2, N - 1 B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) - $ D( I )*X( I, J ) - E( I )*X( I+1, J ) 70 CONTINUE END IF 80 CONTINUE END IF RETURN * * End of DLAPTM * END |