1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
SUBROUTINE DLAVSY( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
$ LDB, INFO ) * * -- LAPACK auxiliary routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER DIAG, TRANS, UPLO INTEGER INFO, LDA, LDB, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ) * .. * * Purpose * ======= * * DLAVSY performs one of the matrix-vector operations * x := A*x or x := A'*x, * where x is an N element vector and A is one of the factors * from the block U*D*U' or L*D*L' factorization computed by DSYTRF. * * If TRANS = 'N', multiplies by U or U * D (or L or L * D) * If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L') * If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L') * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the factor stored in A is upper or lower * triangular. * = 'U': Upper triangular * = 'L': Lower triangular * * TRANS (input) CHARACTER*1 * Specifies the operation to be performed: * = 'N': x := A*x * = 'T': x := A'*x * = 'C': x := A'*x * * DIAG (input) CHARACTER*1 * Specifies whether or not the diagonal blocks are unit * matrices. If the diagonal blocks are assumed to be unit, * then A = U or A = L, otherwise A = U*D or A = L*D. * = 'U': Diagonal blocks are assumed to be unit matrices. * = 'N': Diagonal blocks are assumed to be non-unit matrices. * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of vectors * x to be multiplied by A. NRHS >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The block diagonal matrix D and the multipliers used to * obtain the factor U or L as computed by DSYTRF. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from DSYTRF. * * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) * On entry, B contains NRHS vectors of length N. * On exit, B is overwritten with the product A * B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL NOUNIT INTEGER J, K, KP DOUBLE PRECISION D11, D12, D21, D22, T1, T2 * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DGEMV, DGER, DSCAL, DSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT. $ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = -2 ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) ) $ THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAVSY ', -INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) *------------------------------------------ * * Compute B := A * B (No transpose) * *------------------------------------------ IF( LSAME( TRANS, 'N' ) ) THEN * * Compute B := U*B * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1)) * IF( LSAME( UPLO, 'U' ) ) THEN * * Loop forward applying the transformations. * K = 1 10 CONTINUE IF( K.GT.N ) $ GO TO 30 IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 pivot block * * Multiply by the diagonal element if forming U * D. * IF( NOUNIT ) $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB ) * * Multiply by P(K) * inv(U(K)) if K > 1. * IF( K.GT.1 ) THEN * * Apply the transformation. * CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ), $ LDB, B( 1, 1 ), LDB ) * * Interchange if P(K) .ne. I. * KP = IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) END IF K = K + 1 ELSE * * 2 x 2 pivot block * * Multiply by the diagonal block if forming U * D. * IF( NOUNIT ) THEN D11 = A( K, K ) D22 = A( K+1, K+1 ) D12 = A( K, K+1 ) D21 = D12 DO 20 J = 1, NRHS T1 = B( K, J ) T2 = B( K+1, J ) B( K, J ) = D11*T1 + D12*T2 B( K+1, J ) = D21*T1 + D22*T2 20 CONTINUE END IF * * Multiply by P(K) * inv(U(K)) if K > 1. * IF( K.GT.1 ) THEN * * Apply the transformations. * CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ), $ LDB, B( 1, 1 ), LDB ) CALL DGER( K-1, NRHS, ONE, A( 1, K+1 ), 1, $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB ) * * Interchange if P(K) .ne. I. * KP = ABS( IPIV( K ) ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) END IF K = K + 2 END IF GO TO 10 30 CONTINUE * * Compute B := L*B * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) . * ELSE * * Loop backward applying the transformations to B. * K = N 40 CONTINUE IF( K.LT.1 ) $ GO TO 60 * * Test the pivot index. If greater than zero, a 1 x 1 * pivot was used, otherwise a 2 x 2 pivot was used. * IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 pivot block: * * Multiply by the diagonal element if forming L * D. * IF( NOUNIT ) $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB ) * * Multiply by P(K) * inv(L(K)) if K < N. * IF( K.NE.N ) THEN KP = IPIV( K ) * * Apply the transformation. * CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ), $ LDB, B( K+1, 1 ), LDB ) * * Interchange if a permutation was applied at the * K-th step of the factorization. * IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) END IF K = K - 1 * ELSE * * 2 x 2 pivot block: * * Multiply by the diagonal block if forming L * D. * IF( NOUNIT ) THEN D11 = A( K-1, K-1 ) D22 = A( K, K ) D21 = A( K, K-1 ) D12 = D21 DO 50 J = 1, NRHS T1 = B( K-1, J ) T2 = B( K, J ) B( K-1, J ) = D11*T1 + D12*T2 B( K, J ) = D21*T1 + D22*T2 50 CONTINUE END IF * * Multiply by P(K) * inv(L(K)) if K < N. * IF( K.NE.N ) THEN * * Apply the transformation. * CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ), $ LDB, B( K+1, 1 ), LDB ) CALL DGER( N-K, NRHS, ONE, A( K+1, K-1 ), 1, $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB ) * * Interchange if a permutation was applied at the * K-th step of the factorization. * KP = ABS( IPIV( K ) ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) END IF K = K - 2 END IF GO TO 40 60 CONTINUE END IF *---------------------------------------- * * Compute B := A' * B (transpose) * *---------------------------------------- ELSE * * Form B := U'*B * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1)) * and U' = inv(U'(1))*P(1)* ... *inv(U'(m))*P(m) * IF( LSAME( UPLO, 'U' ) ) THEN * * Loop backward applying the transformations. * K = N 70 CONTINUE IF( K.LT.1 ) $ GO TO 90 * * 1 x 1 pivot block. * IF( IPIV( K ).GT.0 ) THEN IF( K.GT.1 ) THEN * * Interchange if P(K) .ne. I. * KP = IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) * * Apply the transformation * CALL DGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB, $ A( 1, K ), 1, ONE, B( K, 1 ), LDB ) END IF IF( NOUNIT ) $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB ) K = K - 1 * * 2 x 2 pivot block. * ELSE IF( K.GT.2 ) THEN * * Interchange if P(K) .ne. I. * KP = ABS( IPIV( K ) ) IF( KP.NE.K-1 ) $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), $ LDB ) * * Apply the transformations * CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB, $ A( 1, K ), 1, ONE, B( K, 1 ), LDB ) CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB, $ A( 1, K-1 ), 1, ONE, B( K-1, 1 ), LDB ) END IF * * Multiply by the diagonal block if non-unit. * IF( NOUNIT ) THEN D11 = A( K-1, K-1 ) D22 = A( K, K ) D12 = A( K-1, K ) D21 = D12 DO 80 J = 1, NRHS T1 = B( K-1, J ) T2 = B( K, J ) B( K-1, J ) = D11*T1 + D12*T2 B( K, J ) = D21*T1 + D22*T2 80 CONTINUE END IF K = K - 2 END IF GO TO 70 90 CONTINUE * * Form B := L'*B * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) * and L' = inv(L'(m))*P(m)* ... *inv(L'(1))*P(1) * ELSE * * Loop forward applying the L-transformations. * K = 1 100 CONTINUE IF( K.GT.N ) $ GO TO 120 * * 1 x 1 pivot block * IF( IPIV( K ).GT.0 ) THEN IF( K.LT.N ) THEN * * Interchange if P(K) .ne. I. * KP = IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) * * Apply the transformation * CALL DGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ), $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB ) END IF IF( NOUNIT ) $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB ) K = K + 1 * * 2 x 2 pivot block. * ELSE IF( K.LT.N-1 ) THEN * * Interchange if P(K) .ne. I. * KP = ABS( IPIV( K ) ) IF( KP.NE.K+1 ) $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), $ LDB ) * * Apply the transformation * CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE, $ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, ONE, $ B( K+1, 1 ), LDB ) CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE, $ B( K+2, 1 ), LDB, A( K+2, K ), 1, ONE, $ B( K, 1 ), LDB ) END IF * * Multiply by the diagonal block if non-unit. * IF( NOUNIT ) THEN D11 = A( K, K ) D22 = A( K+1, K+1 ) D21 = A( K+1, K ) D12 = D21 DO 110 J = 1, NRHS T1 = B( K, J ) T2 = B( K+1, J ) B( K, J ) = D11*T1 + D12*T2 B( K+1, J ) = D21*T1 + D22*T2 110 CONTINUE END IF K = K + 2 END IF GO TO 100 120 CONTINUE END IF * END IF RETURN * * End of DLAVSY * END |