1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
SUBROUTINE DLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LWORK, M, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), L( LDA, * ), $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * DLQT01 tests DGELQF, which computes the LQ factorization of an m-by-n * matrix A, and partially tests DORGLQ which forms the n-by-n * orthogonal matrix Q. * * DLQT01 compares L with A*Q', and checks that Q is orthogonal. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The m-by-n matrix A. * * AF (output) DOUBLE PRECISION array, dimension (LDA,N) * Details of the LQ factorization of A, as returned by DGELQF. * See DGELQF for further details. * * Q (output) DOUBLE PRECISION array, dimension (LDA,N) * The n-by-n orthogonal matrix Q. * * L (workspace) DOUBLE PRECISION array, dimension (LDA,max(M,N)) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF, Q and L. * LDA >= max(M,N). * * TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) * The scalar factors of the elementary reflectors, as returned * by DGELQF. * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * * RWORK (workspace) DOUBLE PRECISION array, dimension (max(M,N)) * * RESULT (output) DOUBLE PRECISION array, dimension (2) * The test ratios: * RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) * RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) DOUBLE PRECISION ROGUE PARAMETER ( ROGUE = -1.0D+10 ) * .. * .. Local Scalars .. INTEGER INFO, MINMN DOUBLE PRECISION ANORM, EPS, RESID * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLANGE, DLANSY EXTERNAL DLAMCH, DLANGE, DLANSY * .. * .. External Subroutines .. EXTERNAL DGELQF, DGEMM, DLACPY, DLASET, DORGLQ, DSYRK * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * MINMN = MIN( M, N ) EPS = DLAMCH( 'Epsilon' ) * * Copy the matrix A to the array AF. * CALL DLACPY( 'Full', M, N, A, LDA, AF, LDA ) * * Factorize the matrix A in the array AF. * SRNAMT = 'DGELQF' CALL DGELQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO ) * * Copy details of Q * CALL DLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA ) IF( N.GT.1 ) $ CALL DLACPY( 'Upper', M, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA ) * * Generate the n-by-n matrix Q * SRNAMT = 'DORGLQ' CALL DORGLQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO ) * * Copy L * CALL DLASET( 'Full', M, N, ZERO, ZERO, L, LDA ) CALL DLACPY( 'Lower', M, N, AF, LDA, L, LDA ) * * Compute L - A*Q' * CALL DGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q, $ LDA, ONE, L, LDA ) * * Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) . * ANORM = DLANGE( '1', M, N, A, LDA, RWORK ) RESID = DLANGE( '1', M, N, L, LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS ELSE RESULT( 1 ) = ZERO END IF * * Compute I - Q*Q' * CALL DLASET( 'Full', N, N, ZERO, ONE, L, LDA ) CALL DSYRK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, L, $ LDA ) * * Compute norm( I - Q*Q' ) / ( N * EPS ) . * RESID = DLANSY( '1', 'Upper', N, L, LDA, RWORK ) * RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS * RETURN * * End of DLQT01 * END |