DLQT02
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
November 2006
Purpose
DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with
orthonornmal rows that is defined as the product of k elementary
reflectors.
Given the LQ factorization of an m-by-n matrix A, DLQT02 generates
the orthogonal matrix Q defined by the factorization of the first k
rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
checks that the rows of Q are orthonormal.
orthonornmal rows that is defined as the product of k elementary
reflectors.
Given the LQ factorization of an m-by-n matrix A, DLQT02 generates
the orthogonal matrix Q defined by the factorization of the first k
rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
checks that the rows of Q are orthonormal.
Arguments
| M | 
 
(input) INTEGER
 
The number of rows of the matrix Q to be generated.  M >= 0. 
 | 
| N | 
 
(input) INTEGER
 
The number of columns of the matrix Q to be generated. 
N >= M >= 0.  | 
| K | 
 
(input) INTEGER
 
The number of elementary reflectors whose product defines the 
matrix Q. M >= K >= 0.  | 
| A | 
 
(input) DOUBLE PRECISION array, dimension (LDA,N)
 
The m-by-n matrix A which was factorized by DLQT01. 
 | 
| AF | 
 
(input) DOUBLE PRECISION array, dimension (LDA,N)
 
Details of the LQ factorization of A, as returned by DGELQF. 
See DGELQF for further details.  | 
| Q | 
 
(workspace) DOUBLE PRECISION array, dimension (LDA,N)
 
 | 
| L | 
 
(workspace) DOUBLE PRECISION array, dimension (LDA,M)
 
 | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the arrays A, AF, Q and L. LDA >= N. 
 | 
| TAU | 
 
(input) DOUBLE PRECISION array, dimension (M)
 
The scalar factors of the elementary reflectors corresponding 
to the LQ factorization in AF.  | 
| WORK | 
 
(workspace) DOUBLE PRECISION array, dimension (LWORK)
 
 | 
| LWORK | 
 
(input) INTEGER
 
The dimension of the array WORK. 
 | 
| RWORK | 
 
(workspace) DOUBLE PRECISION array, dimension (M)
 
 | 
| RESULT | 
 
(output) DOUBLE PRECISION array, dimension (2)
 
The test ratios: 
RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )  |