1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
DOUBLE PRECISION FUNCTION DQRT14( TRANS, M, N, NRHS, A, LDA, X,
$ LDX, WORK, LWORK ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER LDA, LDX, LWORK, M, N, NRHS * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), WORK( LWORK ), X( LDX, * ) * .. * * Purpose * ======= * * DQRT14 checks whether X is in the row space of A or A'. It does so * by scaling both X and A such that their norms are in the range * [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X] * (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'), * and returning the norm of the trailing triangle, scaled by * MAX(M,N,NRHS)*eps. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * = 'N': No transpose, check for X in the row space of A * = 'T': Transpose, check for X in the row space of A'. * * M (input) INTEGER * The number of rows of the matrix A. * * N (input) INTEGER * The number of columns of the matrix A. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of X. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The M-by-N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. * * X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) * If TRANS = 'N', the N-by-NRHS matrix X. * IF TRANS = 'T', the M-by-NRHS matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. * * WORK (workspace) DOUBLE PRECISION array dimension (LWORK) * * LWORK (input) INTEGER * length of workspace array required * If TRANS = 'N', LWORK >= (M+NRHS)*(N+2); * if TRANS = 'T', LWORK >= (N+NRHS)*(M+2). * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. LOGICAL TPSD INTEGER I, INFO, J, LDWORK DOUBLE PRECISION ANRM, ERR, XNRM * .. * .. Local Arrays .. DOUBLE PRECISION RWORK( 1 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL LSAME, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DGELQ2, DGEQR2, DLACPY, DLASCL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Executable Statements .. * DQRT14 = ZERO IF( LSAME( TRANS, 'N' ) ) THEN LDWORK = M + NRHS TPSD = .FALSE. IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN CALL XERBLA( 'DQRT14', 10 ) RETURN ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RETURN END IF ELSE IF( LSAME( TRANS, 'T' ) ) THEN LDWORK = M TPSD = .TRUE. IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN CALL XERBLA( 'DQRT14', 10 ) RETURN ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN RETURN END IF ELSE CALL XERBLA( 'DQRT14', 1 ) RETURN END IF * * Copy and scale A * CALL DLACPY( 'All', M, N, A, LDA, WORK, LDWORK ) ANRM = DLANGE( 'M', M, N, WORK, LDWORK, RWORK ) IF( ANRM.NE.ZERO ) $ CALL DLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO ) * * Copy X or X' into the right place and scale it * IF( TPSD ) THEN * * Copy X into columns n+1:n+nrhs of work * CALL DLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ), $ LDWORK ) XNRM = DLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK, $ RWORK ) IF( XNRM.NE.ZERO ) $ CALL DLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS, $ WORK( N*LDWORK+1 ), LDWORK, INFO ) ANRM = DLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK ) * * Compute QR factorization of X * CALL DGEQR2( M, N+NRHS, WORK, LDWORK, $ WORK( LDWORK*( N+NRHS )+1 ), $ WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ), $ INFO ) * * Compute largest entry in upper triangle of * work(n+1:m,n+1:n+nrhs) * ERR = ZERO DO 20 J = N + 1, N + NRHS DO 10 I = N + 1, MIN( M, J ) ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) ) 10 CONTINUE 20 CONTINUE * ELSE * * Copy X' into rows m+1:m+nrhs of work * DO 40 I = 1, N DO 30 J = 1, NRHS WORK( M+J+( I-1 )*LDWORK ) = X( I, J ) 30 CONTINUE 40 CONTINUE * XNRM = DLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK ) IF( XNRM.NE.ZERO ) $ CALL DLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ), $ LDWORK, INFO ) * * Compute LQ factorization of work * CALL DGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ), $ WORK( LDWORK*( N+1 )+1 ), INFO ) * * Compute largest entry in lower triangle in * work(m+1:m+nrhs,m+1:n) * ERR = ZERO DO 60 J = M + 1, N DO 50 I = J, LDWORK ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) ) 50 CONTINUE 60 CONTINUE * END IF * DQRT14 = ERR / ( DBLE( MAX( M, N, NRHS ) )*DLAMCH( 'Epsilon' ) ) * RETURN * * End of DQRT14 * END |