DQRT15
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
November 2006
Purpose
DQRT15 generates a matrix with full or deficient rank and of various
norms.
norms.
Arguments
SCALE |
(input) INTEGER
SCALE = 1: normally scaled matrix
SCALE = 2: matrix scaled up SCALE = 3: matrix scaled down |
RKSEL |
(input) INTEGER
RKSEL = 1: full rank matrix
RKSEL = 2: rank-deficient matrix |
M |
(input) INTEGER
The number of rows of the matrix A.
|
N |
(input) INTEGER
The number of columns of A.
|
NRHS |
(input) INTEGER
The number of columns of B.
|
A |
(output) DOUBLE PRECISION array, dimension (LDA,N)
The M-by-N matrix A.
|
LDA |
(input) INTEGER
The leading dimension of the array A.
|
B |
(output) DOUBLE PRECISION array, dimension (LDB, NRHS)
A matrix that is in the range space of matrix A.
|
LDB |
(input) INTEGER
The leading dimension of the array B.
|
S |
(output) DOUBLE PRECISION array, dimension MIN(M,N)
Singular values of A.
|
RANK |
(output) INTEGER
number of nonzero singular values of A.
|
NORMA |
(output) DOUBLE PRECISION
one-norm of A.
|
NORMB |
(output) DOUBLE PRECISION
one-norm of B.
|
ISEED |
(input/output) integer array, dimension (4)
seed for random number generator.
|
WORK |
(workspace) DOUBLE PRECISION array, dimension (LWORK)
|
LWORK |
(input) INTEGER
length of work space required.
LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) |