1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
SUBROUTINE DTRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
$ WORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER DIAG, UPLO INTEGER LDA, LDAINV, N DOUBLE PRECISION RCOND, RESID * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), WORK( * ) * .. * * Purpose * ======= * * DTRT01 computes the residual for a triangular matrix A times its * inverse: * RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the matrix A is upper or lower triangular. * = 'U': Upper triangular * = 'L': Lower triangular * * DIAG (input) CHARACTER*1 * Specifies whether or not the matrix A is unit triangular. * = 'N': Non-unit triangular * = 'U': Unit triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The triangular matrix A. If UPLO = 'U', the leading n by n * upper triangular part of the array A contains the upper * triangular matrix, and the strictly lower triangular part of * A is not referenced. If UPLO = 'L', the leading n by n lower * triangular part of the array A contains the lower triangular * matrix, and the strictly upper triangular part of A is not * referenced. If DIAG = 'U', the diagonal elements of A are * also not referenced and are assumed to be 1. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * AINV (input/output) DOUBLE PRECISION array, dimension (LDAINV,N) * On entry, the (triangular) inverse of the matrix A, in the * same storage format as A. * On exit, the contents of AINV are destroyed. * * LDAINV (input) INTEGER * The leading dimension of the array AINV. LDAINV >= max(1,N). * * RCOND (output) DOUBLE PRECISION * The reciprocal condition number of A, computed as * 1/(norm(A) * norm(AINV)). * * WORK (workspace) DOUBLE PRECISION array, dimension (N) * * RESID (output) DOUBLE PRECISION * norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER J DOUBLE PRECISION AINVNM, ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLANTR EXTERNAL LSAME, DLAMCH, DLANTR * .. * .. External Subroutines .. EXTERNAL DTRMV * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. * .. Executable Statements .. * * Quick exit if N = 0 * IF( N.LE.0 ) THEN RCOND = ONE RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = DLANTR( '1', UPLO, DIAG, N, N, A, LDA, WORK ) AINVNM = DLANTR( '1', UPLO, DIAG, N, N, AINV, LDAINV, WORK ) IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCOND = ZERO RESID = ONE / EPS RETURN END IF RCOND = ( ONE / ANORM ) / AINVNM * * Set the diagonal of AINV to 1 if AINV has unit diagonal. * IF( LSAME( DIAG, 'U' ) ) THEN DO 10 J = 1, N AINV( J, J ) = ONE 10 CONTINUE END IF * * Compute A * AINV, overwriting AINV. * IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N CALL DTRMV( 'Upper', 'No transpose', DIAG, J, A, LDA, $ AINV( 1, J ), 1 ) 20 CONTINUE ELSE DO 30 J = 1, N CALL DTRMV( 'Lower', 'No transpose', DIAG, N-J+1, A( J, J ), $ LDA, AINV( J, J ), 1 ) 30 CONTINUE END IF * * Subtract 1 from each diagonal element to form A*AINV - I. * DO 40 J = 1, N AINV( J, J ) = AINV( J, J ) - ONE 40 CONTINUE * * Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) * RESID = DLANTR( '1', UPLO, 'Non-unit', N, N, AINV, LDAINV, WORK ) * RESID = ( ( RESID*RCOND ) / DBLE( N ) ) / EPS * RETURN * * End of DTRT01 * END |