1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
SUBROUTINE SGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
$ LDB, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS REAL RESID * .. * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * Purpose * ======= * * SGBT02 computes the residual for a solution of a banded system of * equations A*x = b or A'*x = b: * RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS). * where EPS is the machine precision. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A *x = b * = 'T': A'*x = b, where A' is the transpose of A * = 'C': A'*x = b, where A' is the transpose of A * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * KL (input) INTEGER * The number of subdiagonals within the band of A. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals within the band of A. KU >= 0. * * NRHS (input) INTEGER * The number of columns of B. NRHS >= 0. * * A (input) REAL array, dimension (LDA,N) * The original matrix A in band storage, stored in rows 1 to * KL+KU+1. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,KL+KU+1). * * X (input) REAL array, dimension (LDX,NRHS) * The computed solution vectors for the system of linear * equations. * * LDX (input) INTEGER * The leading dimension of the array X. If TRANS = 'N', * LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). * * B (input/output) REAL array, dimension (LDB,NRHS) * On entry, the right hand side vectors for the system of * linear equations. * On exit, B is overwritten with the difference B - A*X. * * LDB (input) INTEGER * The leading dimension of the array B. IF TRANS = 'N', * LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). * * RESID (output) REAL * The maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ). * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I1, I2, J, KD, N1 REAL ANORM, BNORM, EPS, XNORM * .. * .. External Functions .. LOGICAL LSAME REAL SASUM, SLAMCH EXTERNAL LSAME, SASUM, SLAMCH * .. * .. External Subroutines .. EXTERNAL SGBMV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Quick return if N = 0 pr NRHS = 0 * IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = SLAMCH( 'Epsilon' ) KD = KU + 1 ANORM = ZERO DO 10 J = 1, N I1 = MAX( KD+1-J, 1 ) I2 = MIN( KD+M-J, KL+KD ) ANORM = MAX( ANORM, SASUM( I2-I1+1, A( I1, J ), 1 ) ) 10 CONTINUE IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN N1 = N ELSE N1 = M END IF * * Compute B - A*X (or B - A'*X ) * DO 20 J = 1, NRHS CALL SGBMV( TRANS, M, N, KL, KU, -ONE, A, LDA, X( 1, J ), 1, $ ONE, B( 1, J ), 1 ) 20 CONTINUE * * Compute the maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ). * RESID = ZERO DO 30 J = 1, NRHS BNORM = SASUM( N1, B( 1, J ), 1 ) XNORM = SASUM( N1, X( 1, J ), 1 ) IF( XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS ) END IF 30 CONTINUE * RETURN * * End of SGBT02 * END |