1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
SUBROUTINE SLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), AF( LDA, * ), L( LDA, * ), $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * SLQT02 tests SORGLQ, which generates an m-by-n matrix Q with * orthonornmal rows that is defined as the product of k elementary * reflectors. * * Given the LQ factorization of an m-by-n matrix A, SLQT02 generates * the orthogonal matrix Q defined by the factorization of the first k * rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and * checks that the rows of Q are orthonormal. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix Q to be generated. M >= 0. * * N (input) INTEGER * The number of columns of the matrix Q to be generated. * N >= M >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines the * matrix Q. M >= K >= 0. * * A (input) REAL array, dimension (LDA,N) * The m-by-n matrix A which was factorized by SLQT01. * * AF (input) REAL array, dimension (LDA,N) * Details of the LQ factorization of A, as returned by SGELQF. * See SGELQF for further details. * * Q (workspace) REAL array, dimension (LDA,N) * * L (workspace) REAL array, dimension (LDA,M) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF, Q and L. LDA >= N. * * TAU (input) REAL array, dimension (M) * The scalar factors of the elementary reflectors corresponding * to the LQ factorization in AF. * * WORK (workspace) REAL array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * * RWORK (workspace) REAL array, dimension (M) * * RESULT (output) REAL array, dimension (2) * The test ratios: * RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) * RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL ROGUE PARAMETER ( ROGUE = -1.0E+10 ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, EPS, RESID * .. * .. External Functions .. REAL SLAMCH, SLANGE, SLANSY EXTERNAL SLAMCH, SLANGE, SLANSY * .. * .. External Subroutines .. EXTERNAL SGEMM, SLACPY, SLASET, SORGLQ, SSYRK * .. * .. Intrinsic Functions .. INTRINSIC MAX, REAL * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * EPS = SLAMCH( 'Epsilon' ) * * Copy the first k rows of the factorization to the array Q * CALL SLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA ) CALL SLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA ) * * Generate the first n columns of the matrix Q * SRNAMT = 'SORGLQ' CALL SORGLQ( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO ) * * Copy L(1:k,1:m) * CALL SLASET( 'Full', K, M, ZERO, ZERO, L, LDA ) CALL SLACPY( 'Lower', K, M, AF, LDA, L, LDA ) * * Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)' * CALL SGEMM( 'No transpose', 'Transpose', K, M, N, -ONE, A, LDA, Q, $ LDA, ONE, L, LDA ) * * Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) . * ANORM = SLANGE( '1', K, N, A, LDA, RWORK ) RESID = SLANGE( '1', K, M, L, LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS ELSE RESULT( 1 ) = ZERO END IF * * Compute I - Q*Q' * CALL SLASET( 'Full', M, M, ZERO, ONE, L, LDA ) CALL SSYRK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, L, $ LDA ) * * Compute norm( I - Q*Q' ) / ( N * EPS ) . * RESID = SLANSY( '1', 'Upper', M, L, LDA, RWORK ) * RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS * RETURN * * End of SLQT02 * END |