1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
SUBROUTINE SPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
$ RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER KD, LDA, LDAFAC, N REAL RESID * .. * .. Array Arguments .. REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * ) * .. * * Purpose * ======= * * SPBT01 reconstructs a symmetric positive definite band matrix A from * its L*L' or U'*U factorization and computes the residual * norm( L*L' - A ) / ( N * norm(A) * EPS ) or * norm( U'*U - A ) / ( N * norm(A) * EPS ), * where EPS is the machine epsilon, L' is the conjugate transpose of * L, and U' is the conjugate transpose of U. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * KD (input) INTEGER * The number of super-diagonals of the matrix A if UPLO = 'U', * or the number of sub-diagonals if UPLO = 'L'. KD >= 0. * * A (input) REAL array, dimension (LDA,N) * The original symmetric band matrix A. If UPLO = 'U', the * upper triangular part of A is stored as a band matrix; if * UPLO = 'L', the lower triangular part of A is stored. The * columns of the appropriate triangle are stored in the columns * of A and the diagonals of the triangle are stored in the rows * of A. See SPBTRF for further details. * * LDA (input) INTEGER. * The leading dimension of the array A. LDA >= max(1,KD+1). * * AFAC (input) REAL array, dimension (LDAFAC,N) * The factored form of the matrix A. AFAC contains the factor * L or U from the L*L' or U'*U factorization in band storage * format, as computed by SPBTRF. * * LDAFAC (input) INTEGER * The leading dimension of the array AFAC. * LDAFAC >= max(1,KD+1). * * RWORK (workspace) REAL array, dimension (N) * * RESID (output) REAL * If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J, K, KC, KLEN, ML, MU REAL ANORM, EPS, T * .. * .. External Functions .. LOGICAL LSAME REAL SDOT, SLAMCH, SLANSB EXTERNAL LSAME, SDOT, SLAMCH, SLANSB * .. * .. External Subroutines .. EXTERNAL SSCAL, SSYR, STRMV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = SLANSB( '1', UPLO, N, KD, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute the product U'*U, overwriting U. * IF( LSAME( UPLO, 'U' ) ) THEN DO 10 K = N, 1, -1 KC = MAX( 1, KD+2-K ) KLEN = KD + 1 - KC * * Compute the (K,K) element of the result. * T = SDOT( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 ) AFAC( KD+1, K ) = T * * Compute the rest of column K. * IF( KLEN.GT.0 ) $ CALL STRMV( 'Upper', 'Transpose', 'Non-unit', KLEN, $ AFAC( KD+1, K-KLEN ), LDAFAC-1, $ AFAC( KC, K ), 1 ) * 10 CONTINUE * * UPLO = 'L': Compute the product L*L', overwriting L. * ELSE DO 20 K = N, 1, -1 KLEN = MIN( KD, N-K ) * * Add a multiple of column K of the factor L to each of * columns K+1 through N. * IF( KLEN.GT.0 ) $ CALL SSYR( 'Lower', KLEN, ONE, AFAC( 2, K ), 1, $ AFAC( 1, K+1 ), LDAFAC-1 ) * * Scale column K by the diagonal element. * T = AFAC( 1, K ) CALL SSCAL( KLEN+1, T, AFAC( 1, K ), 1 ) * 20 CONTINUE END IF * * Compute the difference L*L' - A or U'*U - A. * IF( LSAME( UPLO, 'U' ) ) THEN DO 40 J = 1, N MU = MAX( 1, KD+2-J ) DO 30 I = MU, KD + 1 AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 30 CONTINUE 40 CONTINUE ELSE DO 60 J = 1, N ML = MIN( KD+1, N-J+1 ) DO 50 I = 1, ML AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 50 CONTINUE 60 CONTINUE END IF * * Compute norm( L*L' - A ) / ( N * norm(A) * EPS ) * RESID = SLANSB( 'I', UPLO, N, KD, AFAC, LDAFAC, RWORK ) * RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS * RETURN * * End of SPBT01 * END |