1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
SUBROUTINE SPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
$ RWORK, RCOND, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDAINV, LDWORK, N REAL RCOND, RESID * .. * .. Array Arguments .. REAL A( LDA, * ), AINV( LDAINV, * ), RWORK( * ), $ WORK( LDWORK, * ) * .. * * Purpose * ======= * * SPOT03 computes the residual for a symmetric matrix times its * inverse: * norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) REAL array, dimension (LDA,N) * The original symmetric matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N) * * AINV (input/output) REAL array, dimension (LDAINV,N) * On entry, the inverse of the matrix A, stored as a symmetric * matrix in the same format as A. * In this version, AINV is expanded into a full matrix and * multiplied by A, so the opposing triangle of AINV will be * changed; i.e., if the upper triangular part of AINV is * stored, the lower triangular part will be used as work space. * * LDAINV (input) INTEGER * The leading dimension of the array AINV. LDAINV >= max(1,N). * * WORK (workspace) REAL array, dimension (LDWORK,N) * * LDWORK (input) INTEGER * The leading dimension of the array WORK. LDWORK >= max(1,N). * * RWORK (workspace) REAL array, dimension (N) * * RCOND (output) REAL * The reciprocal of the condition number of A, computed as * ( 1/norm(A) ) / norm(AINV). * * RESID (output) REAL * norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J REAL AINVNM, ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANGE, SLANSY EXTERNAL LSAME, SLAMCH, SLANGE, SLANSY * .. * .. External Subroutines .. EXTERNAL SSYMM * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RCOND = ONE RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK ) AINVNM = SLANSY( '1', UPLO, N, AINV, LDAINV, RWORK ) IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCOND = ZERO RESID = ONE / EPS RETURN END IF RCOND = ( ONE / ANORM ) / AINVNM * * Expand AINV into a full matrix and call SSYMM to multiply * AINV on the left by A. * IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = 1, J - 1 AINV( J, I ) = AINV( I, J ) 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = J + 1, N AINV( J, I ) = AINV( I, J ) 30 CONTINUE 40 CONTINUE END IF CALL SSYMM( 'Left', UPLO, N, N, -ONE, A, LDA, AINV, LDAINV, ZERO, $ WORK, LDWORK ) * * Add the identity matrix to WORK . * DO 50 I = 1, N WORK( I, I ) = WORK( I, I ) + ONE 50 CONTINUE * * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) * RESID = SLANGE( '1', N, N, WORK, LDWORK, RWORK ) * RESID = ( ( RESID*RCOND ) / EPS ) / REAL( N ) * RETURN * * End of SPOT03 * END |