1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
SUBROUTINE SPPT01( UPLO, N, A, AFAC, RWORK, RESID )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER N REAL RESID * .. * .. Array Arguments .. REAL A( * ), AFAC( * ), RWORK( * ) * .. * * Purpose * ======= * * SPPT01 reconstructs a symmetric positive definite packed matrix A * from its L*L' or U'*U factorization and computes the residual * norm( L*L' - A ) / ( N * norm(A) * EPS ) or * norm( U'*U - A ) / ( N * norm(A) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) REAL array, dimension (N*(N+1)/2) * The original symmetric matrix A, stored as a packed * triangular matrix. * * AFAC (input/output) REAL array, dimension (N*(N+1)/2) * On entry, the factor L or U from the L*L' or U'*U * factorization of A, stored as a packed triangular matrix. * Overwritten with the reconstructed matrix, and then with the * difference L*L' - A (or U'*U - A). * * RWORK (workspace) REAL array, dimension (N) * * RESID (output) REAL * If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, K, KC, NPP REAL ANORM, EPS, T * .. * .. External Functions .. LOGICAL LSAME REAL SDOT, SLAMCH, SLANSP EXTERNAL LSAME, SDOT, SLAMCH, SLANSP * .. * .. External Subroutines .. EXTERNAL SSCAL, SSPR, STPMV * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * * Quick exit if N = 0 * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = SLANSP( '1', UPLO, N, A, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute the product U'*U, overwriting U. * IF( LSAME( UPLO, 'U' ) ) THEN KC = ( N*( N-1 ) ) / 2 + 1 DO 10 K = N, 1, -1 * * Compute the (K,K) element of the result. * T = SDOT( K, AFAC( KC ), 1, AFAC( KC ), 1 ) AFAC( KC+K-1 ) = T * * Compute the rest of column K. * IF( K.GT.1 ) THEN CALL STPMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC, $ AFAC( KC ), 1 ) KC = KC - ( K-1 ) END IF 10 CONTINUE * * Compute the product L*L', overwriting L. * ELSE KC = ( N*( N+1 ) ) / 2 DO 20 K = N, 1, -1 * * Add a multiple of column K of the factor L to each of * columns K+1 through N. * IF( K.LT.N ) $ CALL SSPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1, $ AFAC( KC+N-K+1 ) ) * * Scale column K by the diagonal element. * T = AFAC( KC ) CALL SSCAL( N-K+1, T, AFAC( KC ), 1 ) * KC = KC - ( N-K+2 ) 20 CONTINUE END IF * * Compute the difference L*L' - A (or U'*U - A). * NPP = N*( N+1 ) / 2 DO 30 I = 1, NPP AFAC( I ) = AFAC( I ) - A( I ) 30 CONTINUE * * Compute norm( L*U - A ) / ( N * norm(A) * EPS ) * RESID = SLANSP( '1', UPLO, N, AFAC, RWORK ) * RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS * RETURN * * End of SPPT01 * END |