1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
SUBROUTINE SPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
$ RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDWORK, N REAL RCOND, RESID * .. * .. Array Arguments .. REAL A( * ), AINV( * ), RWORK( * ), $ WORK( LDWORK, * ) * .. * * Purpose * ======= * * SPPT03 computes the residual for a symmetric packed matrix times its * inverse: * norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) REAL array, dimension (N*(N+1)/2) * The original symmetric matrix A, stored as a packed * triangular matrix. * * AINV (input) REAL array, dimension (N*(N+1)/2) * The (symmetric) inverse of the matrix A, stored as a packed * triangular matrix. * * WORK (workspace) REAL array, dimension (LDWORK,N) * * LDWORK (input) INTEGER * The leading dimension of the array WORK. LDWORK >= max(1,N). * * RWORK (workspace) REAL array, dimension (N) * * RCOND (output) REAL * The reciprocal of the condition number of A, computed as * ( 1/norm(A) ) / norm(AINV). * * RESID (output) REAL * norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J, JJ REAL AINVNM, ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANGE, SLANSP EXTERNAL LSAME, SLAMCH, SLANGE, SLANSP * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. External Subroutines .. EXTERNAL SCOPY, SSPMV * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RCOND = ONE RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = SLANSP( '1', UPLO, N, A, RWORK ) AINVNM = SLANSP( '1', UPLO, N, AINV, RWORK ) IF( ANORM.LE.ZERO .OR. AINVNM.EQ.ZERO ) THEN RCOND = ZERO RESID = ONE / EPS RETURN END IF RCOND = ( ONE / ANORM ) / AINVNM * * UPLO = 'U': * Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and * expand it to a full matrix, then multiply by A one column at a * time, moving the result one column to the left. * IF( LSAME( UPLO, 'U' ) ) THEN * * Copy AINV * JJ = 1 DO 10 J = 1, N - 1 CALL SCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 ) CALL SCOPY( J-1, AINV( JJ ), 1, WORK( J, 2 ), LDWORK ) JJ = JJ + J 10 CONTINUE JJ = ( ( N-1 )*N ) / 2 + 1 CALL SCOPY( N-1, AINV( JJ ), 1, WORK( N, 2 ), LDWORK ) * * Multiply by A * DO 20 J = 1, N - 1 CALL SSPMV( 'Upper', N, -ONE, A, WORK( 1, J+1 ), 1, ZERO, $ WORK( 1, J ), 1 ) 20 CONTINUE CALL SSPMV( 'Upper', N, -ONE, A, AINV( JJ ), 1, ZERO, $ WORK( 1, N ), 1 ) * * UPLO = 'L': * Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1) * and multiply by A, moving each column to the right. * ELSE * * Copy AINV * CALL SCOPY( N-1, AINV( 2 ), 1, WORK( 1, 1 ), LDWORK ) JJ = N + 1 DO 30 J = 2, N CALL SCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 ) CALL SCOPY( N-J, AINV( JJ+1 ), 1, WORK( J, J ), LDWORK ) JJ = JJ + N - J + 1 30 CONTINUE * * Multiply by A * DO 40 J = N, 2, -1 CALL SSPMV( 'Lower', N, -ONE, A, WORK( 1, J-1 ), 1, ZERO, $ WORK( 1, J ), 1 ) 40 CONTINUE CALL SSPMV( 'Lower', N, -ONE, A, AINV( 1 ), 1, ZERO, $ WORK( 1, 1 ), 1 ) * END IF * * Add the identity matrix to WORK . * DO 50 I = 1, N WORK( I, I ) = WORK( I, I ) + ONE 50 CONTINUE * * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) * RESID = SLANGE( '1', N, N, WORK, LDWORK, RWORK ) * RESID = ( ( RESID*RCOND ) / EPS ) / REAL( N ) * RETURN * * End of SPPT03 * END |