1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
SUBROUTINE SPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
$ PIV, RWORK, RESID, RANK ) * * -- LAPACK test routine (version 3.1) -- * Craig Lucas, University of Manchester / NAG Ltd. * October, 2008 * * .. Scalar Arguments .. REAL RESID INTEGER LDA, LDAFAC, LDPERM, N, RANK CHARACTER UPLO * .. * .. Array Arguments .. REAL A( LDA, * ), AFAC( LDAFAC, * ), $ PERM( LDPERM, * ), RWORK( * ) INTEGER PIV( * ) * .. * * Purpose * ======= * * SPST01 reconstructs a symmetric positive semidefinite matrix A * from its L or U factors and the permutation matrix P and computes * the residual * norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or * norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) REAL array, dimension (LDA,N) * The original symmetric matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N) * * AFAC (input) REAL array, dimension (LDAFAC,N) * The factor L or U from the L*L' or U'*U * factorization of A. * * LDAFAC (input) INTEGER * The leading dimension of the array AFAC. LDAFAC >= max(1,N). * * PERM (output) REAL array, dimension (LDPERM,N) * Overwritten with the reconstructed matrix, and then with the * difference P*L*L'*P' - A (or P*U'*U*P' - A) * * LDPERM (input) INTEGER * The leading dimension of the array PERM. * LDAPERM >= max(1,N). * * PIV (input) INTEGER array, dimension (N) * PIV is such that the nonzero entries are * P( PIV( K ), K ) = 1. * * RWORK (workspace) REAL array, dimension (N) * * RESID (output) REAL * If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. REAL ANORM, EPS, T INTEGER I, J, K * .. * .. External Functions .. REAL SDOT, SLAMCH, SLANSY LOGICAL LSAME EXTERNAL SDOT, SLAMCH, SLANSY, LSAME * .. * .. External Subroutines .. EXTERNAL SSCAL, SSYR, STRMV * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = SLAMCH( 'Epsilon' ) ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute the product U'*U, overwriting U. * IF( LSAME( UPLO, 'U' ) ) THEN * IF( RANK.LT.N ) THEN DO 110 J = RANK + 1, N DO 100 I = RANK + 1, J AFAC( I, J ) = ZERO 100 CONTINUE 110 CONTINUE END IF * DO 120 K = N, 1, -1 * * Compute the (K,K) element of the result. * T = SDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) AFAC( K, K ) = T * * Compute the rest of column K. * CALL STRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC, $ LDAFAC, AFAC( 1, K ), 1 ) * 120 CONTINUE * * Compute the product L*L', overwriting L. * ELSE * IF( RANK.LT.N ) THEN DO 140 J = RANK + 1, N DO 130 I = J, N AFAC( I, J ) = ZERO 130 CONTINUE 140 CONTINUE END IF * DO 150 K = N, 1, -1 * Add a multiple of column K of the factor L to each of * columns K+1 through N. * IF( K+1.LE.N ) $ CALL SSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1, $ AFAC( K+1, K+1 ), LDAFAC ) * * Scale column K by the diagonal element. * T = AFAC( K, K ) CALL SSCAL( N-K+1, T, AFAC( K, K ), 1 ) 150 CONTINUE * END IF * * Form P*L*L'*P' or P*U'*U*P' * IF( LSAME( UPLO, 'U' ) ) THEN * DO 170 J = 1, N DO 160 I = 1, N IF( PIV( I ).LE.PIV( J ) ) THEN IF( I.LE.J ) THEN PERM( PIV( I ), PIV( J ) ) = AFAC( I, J ) ELSE PERM( PIV( I ), PIV( J ) ) = AFAC( J, I ) END IF END IF 160 CONTINUE 170 CONTINUE * * ELSE * DO 190 J = 1, N DO 180 I = 1, N IF( PIV( I ).GE.PIV( J ) ) THEN IF( I.GE.J ) THEN PERM( PIV( I ), PIV( J ) ) = AFAC( I, J ) ELSE PERM( PIV( I ), PIV( J ) ) = AFAC( J, I ) END IF END IF 180 CONTINUE 190 CONTINUE * END IF * * Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A). * IF( LSAME( UPLO, 'U' ) ) THEN DO 210 J = 1, N DO 200 I = 1, J PERM( I, J ) = PERM( I, J ) - A( I, J ) 200 CONTINUE 210 CONTINUE ELSE DO 230 J = 1, N DO 220 I = J, N PERM( I, J ) = PERM( I, J ) - A( I, J ) 220 CONTINUE 230 CONTINUE END IF * * Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or * ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ). * RESID = SLANSY( '1', UPLO, N, PERM, LDAFAC, RWORK ) * RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS * RETURN * * End of SPST01 * END |