SPTT02
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
November 2006
Purpose
SPTT02 computes the residual for the solution to a symmetric
tridiagonal system of equations:
RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
where EPS is the machine epsilon.
tridiagonal system of equations:
RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
where EPS is the machine epsilon.
Arguments
N |
(input) INTEGTER
The order of the matrix A.
|
NRHS |
(input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0. |
D |
(input) REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
|
E |
(input) REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
|
X |
(input) REAL array, dimension (LDX,NRHS)
The n by nrhs matrix of solution vectors X.
|
LDX |
(input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
|
B |
(input/output) REAL array, dimension (LDB,NRHS)
On entry, the n by nrhs matrix of right hand side vectors B.
On exit, B is overwritten with the difference B - A*X. |
LDB |
(input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
|
RESID |
(output) REAL
norm(B - A*X) / (norm(A) * norm(X) * EPS)
|