1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
REAL FUNCTION SQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
$ WORK, LWORK ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. INTEGER JPVT( * ) REAL A( LDA, * ), AF( LDA, * ), TAU( * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * SQPT01 tests the QR-factorization with pivoting of a matrix A. The * array AF contains the (possibly partial) QR-factorization of A, where * the upper triangle of AF(1:k,1:k) is a partial triangular factor, * the entries below the diagonal in the first k columns are the * Householder vectors, and the rest of AF contains a partially updated * matrix. * * This function returns ||A*P - Q*R||/(||norm(A)||*eps*M) * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrices A and AF. * * N (input) INTEGER * The number of columns of the matrices A and AF. * * K (input) INTEGER * The number of columns of AF that have been reduced * to upper triangular form. * * A (input) REAL array, dimension (LDA, N) * The original matrix A. * * AF (input) REAL array, dimension (LDA,N) * The (possibly partial) output of SGEQPF. The upper triangle * of AF(1:k,1:k) is a partial triangular factor, the entries * below the diagonal in the first k columns are the Householder * vectors, and the rest of AF contains a partially updated * matrix. * * LDA (input) INTEGER * The leading dimension of the arrays A and AF. * * TAU (input) REAL array, dimension (K) * Details of the Householder transformations as returned by * SGEQPF. * * JPVT (input) INTEGER array, dimension (N) * Pivot information as returned by SGEQPF. * * WORK (workspace) REAL array, dimension (LWORK) * * LWORK (input) INTEGER * The length of the array WORK. LWORK >= M*N+N. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. INTEGER I, INFO, J REAL NORMA * .. * .. Local Arrays .. REAL RWORK( 1 ) * .. * .. External Functions .. REAL SLAMCH, SLANGE EXTERNAL SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SAXPY, SCOPY, SORMQR, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * SQPT01 = ZERO * * Test if there is enough workspace * IF( LWORK.LT.M*N+N ) THEN CALL XERBLA( 'SQPT01', 10 ) RETURN END IF * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) $ RETURN * NORMA = SLANGE( 'One-norm', M, N, A, LDA, RWORK ) * DO 30 J = 1, K DO 10 I = 1, MIN( J, M ) WORK( ( J-1 )*M+I ) = AF( I, J ) 10 CONTINUE DO 20 I = J + 1, M WORK( ( J-1 )*M+I ) = ZERO 20 CONTINUE 30 CONTINUE DO 40 J = K + 1, N CALL SCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 ) 40 CONTINUE * CALL SORMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK, $ M, WORK( M*N+1 ), LWORK-M*N, INFO ) * DO 50 J = 1, N * * Compare i-th column of QR and jpvt(i)-th column of A * CALL SAXPY( M, -ONE, A( 1, JPVT( J ) ), 1, WORK( ( J-1 )*M+1 ), $ 1 ) 50 CONTINUE * SQPT01 = SLANGE( 'One-norm', M, N, WORK, M, RWORK ) / $ ( REAL( MAX( M, N ) )*SLAMCH( 'Epsilon' ) ) IF( NORMA.NE.ZERO ) $ SQPT01 = SQPT01 / NORMA * RETURN * * End of SQPT01 * END |