1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
SUBROUTINE SQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER K, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL AF( LDA, * ), C( LDA, * ), CC( LDA, * ), $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * SQRT03 tests SORMQR, which computes Q*C, Q'*C, C*Q or C*Q'. * * SQRT03 compares the results of a call to SORMQR with the results of * forming Q explicitly by a call to SORGQR and then performing matrix * multiplication by a call to SGEMM. * * Arguments * ========= * * M (input) INTEGER * The order of the orthogonal matrix Q. M >= 0. * * N (input) INTEGER * The number of rows or columns of the matrix C; C is m-by-n if * Q is applied from the left, or n-by-m if Q is applied from * the right. N >= 0. * * K (input) INTEGER * The number of elementary reflectors whose product defines the * orthogonal matrix Q. M >= K >= 0. * * AF (input) REAL array, dimension (LDA,N) * Details of the QR factorization of an m-by-n matrix, as * returnedby SGEQRF. See SGEQRF for further details. * * C (workspace) REAL array, dimension (LDA,N) * * CC (workspace) REAL array, dimension (LDA,N) * * Q (workspace) REAL array, dimension (LDA,M) * * LDA (input) INTEGER * The leading dimension of the arrays AF, C, CC, and Q. * * TAU (input) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors corresponding * to the QR factorization in AF. * * WORK (workspace) REAL array, dimension (LWORK) * * LWORK (input) INTEGER * The length of WORK. LWORK must be at least M, and should be * M*NB, where NB is the blocksize for this environment. * * RWORK (workspace) REAL array, dimension (M) * * RESULT (output) REAL array, dimension (4) * The test ratios compare two techniques for multiplying a * random matrix C by an m-by-m orthogonal matrix Q. * RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS ) * RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS ) * RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS ) * RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E0 ) REAL ROGUE PARAMETER ( ROGUE = -1.0E+10 ) * .. * .. Local Scalars .. CHARACTER SIDE, TRANS INTEGER INFO, ISIDE, ITRANS, J, MC, NC REAL CNORM, EPS, RESID * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANGE EXTERNAL LSAME, SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SGEMM, SLACPY, SLARNV, SLASET, SORGQR, SORMQR * .. * .. Local Arrays .. INTEGER ISEED( 4 ) * .. * .. Intrinsic Functions .. INTRINSIC MAX, REAL * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEED / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * EPS = SLAMCH( 'Epsilon' ) * * Copy the first k columns of the factorization to the array Q * CALL SLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA ) CALL SLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA ) * * Generate the m-by-m matrix Q * SRNAMT = 'SORGQR' CALL SORGQR( M, M, K, Q, LDA, TAU, WORK, LWORK, INFO ) * DO 30 ISIDE = 1, 2 IF( ISIDE.EQ.1 ) THEN SIDE = 'L' MC = M NC = N ELSE SIDE = 'R' MC = N NC = M END IF * * Generate MC by NC matrix C * DO 10 J = 1, NC CALL SLARNV( 2, ISEED, MC, C( 1, J ) ) 10 CONTINUE CNORM = SLANGE( '1', MC, NC, C, LDA, RWORK ) IF( CNORM.EQ.0.0 ) $ CNORM = ONE * DO 20 ITRANS = 1, 2 IF( ITRANS.EQ.1 ) THEN TRANS = 'N' ELSE TRANS = 'T' END IF * * Copy C * CALL SLACPY( 'Full', MC, NC, C, LDA, CC, LDA ) * * Apply Q or Q' to C * SRNAMT = 'SORMQR' CALL SORMQR( SIDE, TRANS, MC, NC, K, AF, LDA, TAU, CC, LDA, $ WORK, LWORK, INFO ) * * Form explicit product and subtract * IF( LSAME( SIDE, 'L' ) ) THEN CALL SGEMM( TRANS, 'No transpose', MC, NC, MC, -ONE, Q, $ LDA, C, LDA, ONE, CC, LDA ) ELSE CALL SGEMM( 'No transpose', TRANS, MC, NC, NC, -ONE, C, $ LDA, Q, LDA, ONE, CC, LDA ) END IF * * Compute error in the difference * RESID = SLANGE( '1', MC, NC, CC, LDA, RWORK ) RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID / $ ( REAL( MAX( 1, M ) )*CNORM*EPS ) * 20 CONTINUE 30 CONTINUE * RETURN * * End of SQRT03 * END |