1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
SUBROUTINE SRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LWORK, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), AF( LDA, * ), Q( LDA, * ), $ R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * SRQT01 tests SGERQF, which computes the RQ factorization of an m-by-n * matrix A, and partially tests SORGRQ which forms the n-by-n * orthogonal matrix Q. * * SRQT01 compares R with A*Q', and checks that Q is orthogonal. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input) REAL array, dimension (LDA,N) * The m-by-n matrix A. * * AF (output) REAL array, dimension (LDA,N) * Details of the RQ factorization of A, as returned by SGERQF. * See SGERQF for further details. * * Q (output) REAL array, dimension (LDA,N) * The n-by-n orthogonal matrix Q. * * R (workspace) REAL array, dimension (LDA,max(M,N)) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF, Q and L. * LDA >= max(M,N). * * TAU (output) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors, as returned * by SGERQF. * * WORK (workspace) REAL array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * * RWORK (workspace) REAL array, dimension (max(M,N)) * * RESULT (output) REAL array, dimension (2) * The test ratios: * RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) * RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL ROGUE PARAMETER ( ROGUE = -1.0E+10 ) * .. * .. Local Scalars .. INTEGER INFO, MINMN REAL ANORM, EPS, RESID * .. * .. External Functions .. REAL SLAMCH, SLANGE, SLANSY EXTERNAL SLAMCH, SLANGE, SLANSY * .. * .. External Subroutines .. EXTERNAL SGEMM, SGERQF, SLACPY, SLASET, SORGRQ, SSYRK * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Scalars in Common .. CHARACTER*32 SRNAMT * .. * .. Common blocks .. COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * MINMN = MIN( M, N ) EPS = SLAMCH( 'Epsilon' ) * * Copy the matrix A to the array AF. * CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA ) * * Factorize the matrix A in the array AF. * SRNAMT = 'SGERQF' CALL SGERQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO ) * * Copy details of Q * CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA ) IF( M.LE.N ) THEN IF( M.GT.0 .AND. M.LT.N ) $ CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA ) IF( M.GT.1 ) $ CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA, $ Q( N-M+2, N-M+1 ), LDA ) ELSE IF( N.GT.1 ) $ CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA, $ Q( 2, 1 ), LDA ) END IF * * Generate the n-by-n matrix Q * SRNAMT = 'SORGRQ' CALL SORGRQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO ) * * Copy R * CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA ) IF( M.LE.N ) THEN IF( M.GT.0 ) $ CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, $ R( 1, N-M+1 ), LDA ) ELSE IF( M.GT.N .AND. N.GT.0 ) $ CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA ) IF( N.GT.0 ) $ CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, $ R( M-N+1, 1 ), LDA ) END IF * * Compute R - A*Q' * CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q, $ LDA, ONE, R, LDA ) * * Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) . * ANORM = SLANGE( '1', M, N, A, LDA, RWORK ) RESID = SLANGE( '1', M, N, R, LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS ELSE RESULT( 1 ) = ZERO END IF * * Compute I - Q*Q' * CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA ) CALL SSYRK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, R, $ LDA ) * * Compute norm( I - Q*Q' ) / ( N * EPS ) . * RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK ) * RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS * RETURN * * End of SRQT01 * END |