1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
SUBROUTINE SSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
$ RWORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDAFAC, LDC, N REAL RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ), $ RWORK( * ) * .. * * Purpose * ======= * * SSYT01 reconstructs a symmetric indefinite matrix A from its * block L*D*L' or U*D*U' factorization and computes the residual * norm( C - A ) / ( N * norm(A) * EPS ), * where C is the reconstructed matrix and EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) REAL array, dimension (LDA,N) * The original symmetric matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N) * * AFAC (input) REAL array, dimension (LDAFAC,N) * The factored form of the matrix A. AFAC contains the block * diagonal matrix D and the multipliers used to obtain the * factor L or U from the block L*D*L' or U*D*U' factorization * as computed by SSYTRF. * * LDAFAC (input) INTEGER * The leading dimension of the array AFAC. LDAFAC >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from SSYTRF. * * C (workspace) REAL array, dimension (LDC,N) * * LDC (integer) INTEGER * The leading dimension of the array C. LDC >= max(1,N). * * RWORK (workspace) REAL array, dimension (N) * * RESID (output) REAL * If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, INFO, J REAL ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANSY EXTERNAL LSAME, SLAMCH, SLANSY * .. * .. External Subroutines .. EXTERNAL SLAVSY, SLASET * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Determine EPS and the norm of A. * EPS = SLAMCH( 'Epsilon' ) ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK ) * * Initialize C to the identity matrix. * CALL SLASET( 'Full', N, N, ZERO, ONE, C, LDC ) * * Call SLAVSY to form the product D * U' (or D * L' ). * CALL SLAVSY( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, LDAFAC, $ IPIV, C, LDC, INFO ) * * Call SLAVSY again to multiply by U (or L ). * CALL SLAVSY( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC, $ IPIV, C, LDC, INFO ) * * Compute the difference C - A . * IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = 1, J C( I, J ) = C( I, J ) - A( I, J ) 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = J, N C( I, J ) = C( I, J ) - A( I, J ) 30 CONTINUE 40 CONTINUE END IF * * Compute norm( C - A ) / ( N * norm(A) * EPS ) * RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS END IF * RETURN * * End of SSYT01 * END |