1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
SUBROUTINE STRT02( UPLO, TRANS, DIAG, N, NRHS, A, LDA, X, LDX, B,
$ LDB, WORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER DIAG, TRANS, UPLO INTEGER LDA, LDB, LDX, N, NRHS REAL RESID * .. * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), WORK( * ), $ X( LDX, * ) * .. * * Purpose * ======= * * STRT02 computes the residual for the computed solution to a * triangular system of linear equations A*x = b or A'*x = b. * Here A is a triangular matrix, A' is the transpose of A, and x and b * are N by NRHS matrices. The test ratio is the maximum over the * number of right hand sides of * norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), * where op(A) denotes A or A' and EPS is the machine epsilon. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the matrix A is upper or lower triangular. * = 'U': Upper triangular * = 'L': Lower triangular * * TRANS (input) CHARACTER*1 * Specifies the operation applied to A. * = 'N': A *x = b (No transpose) * = 'T': A'*x = b (Transpose) * = 'C': A'*x = b (Conjugate transpose = Transpose) * * DIAG (input) CHARACTER*1 * Specifies whether or not the matrix A is unit triangular. * = 'N': Non-unit triangular * = 'U': Unit triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices X and B. NRHS >= 0. * * A (input) REAL array, dimension (LDA,N) * The triangular matrix A. If UPLO = 'U', the leading n by n * upper triangular part of the array A contains the upper * triangular matrix, and the strictly lower triangular part of * A is not referenced. If UPLO = 'L', the leading n by n lower * triangular part of the array A contains the lower triangular * matrix, and the strictly upper triangular part of A is not * referenced. If DIAG = 'U', the diagonal elements of A are * also not referenced and are assumed to be 1. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * X (input) REAL array, dimension (LDX,NRHS) * The computed solution vectors for the system of linear * equations. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * B (input) REAL array, dimension (LDB,NRHS) * The right hand side vectors for the system of linear * equations. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * WORK (workspace) REAL array, dimension (N) * * RESID (output) REAL * The maximum over the number of right hand sides of * norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER J REAL ANORM, BNORM, EPS, XNORM * .. * .. External Functions .. LOGICAL LSAME REAL SASUM, SLAMCH, SLANTR EXTERNAL LSAME, SASUM, SLAMCH, SLANTR * .. * .. External Subroutines .. EXTERNAL SAXPY, SCOPY, STRMV * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Quick exit if N = 0 or NRHS = 0 * IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF * * Compute the 1-norm of A or A'. * IF( LSAME( TRANS, 'N' ) ) THEN ANORM = SLANTR( '1', UPLO, DIAG, N, N, A, LDA, WORK ) ELSE ANORM = SLANTR( 'I', UPLO, DIAG, N, N, A, LDA, WORK ) END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = SLAMCH( 'Epsilon' ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute the maximum over the number of right hand sides of * norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ) * RESID = ZERO DO 10 J = 1, NRHS CALL SCOPY( N, X( 1, J ), 1, WORK, 1 ) CALL STRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 ) CALL SAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 ) BNORM = SASUM( N, WORK, 1 ) XNORM = SASUM( N, X( 1, J ), 1 ) IF( XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS ) END IF 10 CONTINUE * RETURN * * End of STRT02 * END |