1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
SUBROUTINE ZCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ THRESH, A, COPYA, S, COPYS, TAU, WORK, RWORK, $ IWORK, NOUT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER NM, NN, NNB, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ), $ NXVAL( * ) DOUBLE PRECISION COPYS( * ), RWORK( * ), S( * ) COMPLEX*16 A( * ), COPYA( * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * ZCHKQ3 tests ZGEQP3. * * Arguments * ========= * * DOTYPE (input) LOGICAL array, dimension (NTYPES) * The matrix types to be used for testing. Matrices of type j * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. * * NM (input) INTEGER * The number of values of M contained in the vector MVAL. * * MVAL (input) INTEGER array, dimension (NM) * The values of the matrix row dimension M. * * NN (input) INTEGER * The number of values of N contained in the vector NVAL. * * NVAL (input) INTEGER array, dimension (NN) * The values of the matrix column dimension N. * * NNB (input) INTEGER * The number of values of NB and NX contained in the * vectors NBVAL and NXVAL. The blocking parameters are used * in pairs (NB,NX). * * NBVAL (input) INTEGER array, dimension (NNB) * The values of the blocksize NB. * * NXVAL (input) INTEGER array, dimension (NNB) * The values of the crossover point NX. * * THRESH (input) DOUBLE PRECISION * The threshold value for the test ratios. A result is * included in the output file if RESULT >= THRESH. To have * every test ratio printed, use THRESH = 0. * * A (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) * where MMAX is the maximum value of M in MVAL and NMAX is the * maximum value of N in NVAL. * * COPYA (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) * * S (workspace) DOUBLE PRECISION array, dimension * (min(MMAX,NMAX)) * * COPYS (workspace) DOUBLE PRECISION array, dimension * (min(MMAX,NMAX)) * * TAU (workspace) COMPLEX*16 array, dimension (MMAX) * * WORK (workspace) COMPLEX*16 array, dimension * (max(M*max(M,N) + 4*min(M,N) + max(M,N))) * * RWORK (workspace) DOUBLE PRECISION array, dimension (4*NMAX) * * IWORK (workspace) INTEGER array, dimension (2*NMAX) * * NOUT (input) INTEGER * The unit number for output. * * ===================================================================== * * .. Parameters .. INTEGER NTYPES PARAMETER ( NTYPES = 6 ) INTEGER NTESTS PARAMETER ( NTESTS = 3 ) DOUBLE PRECISION ONE, ZERO COMPLEX*16 CZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0, $ CZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. CHARACTER*3 PATH INTEGER I, IHIGH, ILOW, IM, IMODE, IN, INB, INFO, $ ISTEP, K, LDA, LW, LWORK, M, MNMIN, MODE, N, $ NB, NERRS, NFAIL, NRUN, NX DOUBLE PRECISION EPS * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZQPT01, ZQRT11, ZQRT12 EXTERNAL DLAMCH, ZQPT01, ZQRT11, ZQRT12 * .. * .. External Subroutines .. EXTERNAL ALAHD, ALASUM, DLAORD, ICOPY, XLAENV, ZGEQP3, $ ZLACPY, ZLASET, ZLATMS * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, IOUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, IOUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'Q3' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE EPS = DLAMCH( 'Epsilon' ) INFOT = 0 * DO 90 IM = 1, NM * * Do for each value of M in MVAL. * M = MVAL( IM ) LDA = MAX( 1, M ) * DO 80 IN = 1, NN * * Do for each value of N in NVAL. * N = NVAL( IN ) MNMIN = MIN( M, N ) LWORK = MAX( 1, M*MAX( M, N )+4*MNMIN+MAX( M, N ) ) * DO 70 IMODE = 1, NTYPES IF( .NOT.DOTYPE( IMODE ) ) $ GO TO 70 * * Do for each type of matrix * 1: zero matrix * 2: one small singular value * 3: geometric distribution of singular values * 4: first n/2 columns fixed * 5: last n/2 columns fixed * 6: every second column fixed * MODE = IMODE IF( IMODE.GT.3 ) $ MODE = 1 * * Generate test matrix of size m by n using * singular value distribution indicated by `mode'. * DO 20 I = 1, N IWORK( I ) = 0 20 CONTINUE IF( IMODE.EQ.1 ) THEN CALL ZLASET( 'Full', M, N, CZERO, CZERO, COPYA, LDA ) DO 30 I = 1, MNMIN COPYS( I ) = ZERO 30 CONTINUE ELSE CALL ZLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', COPYS, $ MODE, ONE / EPS, ONE, M, N, 'No packing', $ COPYA, LDA, WORK, INFO ) IF( IMODE.GE.4 ) THEN IF( IMODE.EQ.4 ) THEN ILOW = 1 ISTEP = 1 IHIGH = MAX( 1, N / 2 ) ELSE IF( IMODE.EQ.5 ) THEN ILOW = MAX( 1, N / 2 ) ISTEP = 1 IHIGH = N ELSE IF( IMODE.EQ.6 ) THEN ILOW = 1 ISTEP = 2 IHIGH = N END IF DO 40 I = ILOW, IHIGH, ISTEP IWORK( I ) = 1 40 CONTINUE END IF CALL DLAORD( 'Decreasing', MNMIN, COPYS, 1 ) END IF * DO 60 INB = 1, NNB * * Do for each pair of values (NB,NX) in NBVAL and NXVAL. * NB = NBVAL( INB ) CALL XLAENV( 1, NB ) NX = NXVAL( INB ) CALL XLAENV( 3, NX ) * * Save A and its singular values and a copy of * vector IWORK. * CALL ZLACPY( 'All', M, N, COPYA, LDA, A, LDA ) CALL ICOPY( N, IWORK( 1 ), 1, IWORK( N+1 ), 1 ) * * Workspace needed. * LW = NB*( N+1 ) * SRNAMT = 'ZGEQP3' CALL ZGEQP3( M, N, A, LDA, IWORK( N+1 ), TAU, WORK, $ LW, RWORK, INFO ) * * Compute norm(svd(a) - svd(r)) * RESULT( 1 ) = ZQRT12( M, N, A, LDA, COPYS, WORK, $ LWORK, RWORK ) * * Compute norm( A*P - Q*R ) * RESULT( 2 ) = ZQPT01( M, N, MNMIN, COPYA, A, LDA, TAU, $ IWORK( N+1 ), WORK, LWORK ) * * Compute Q'*Q * RESULT( 3 ) = ZQRT11( M, MNMIN, A, LDA, TAU, WORK, $ LWORK ) * * Print information about the tests that did not pass * the threshold. * DO 50 K = 1, NTESTS IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )'ZGEQP3', M, N, NB, $ IMODE, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 50 CONTINUE NRUN = NRUN + NTESTS * 60 CONTINUE 70 CONTINUE 80 CONTINUE 90 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( 1X, A, ' M =', I5, ', N =', I5, ', NB =', I4, ', type ', $ I2, ', test ', I2, ', ratio =', G12.5 ) * * End of ZCHKQ3 * END |