1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
SUBROUTINE ZCHKTZ( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A,
$ COPYA, S, COPYS, TAU, WORK, RWORK, NOUT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NM, NN, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER MVAL( * ), NVAL( * ) DOUBLE PRECISION COPYS( * ), RWORK( * ), S( * ) COMPLEX*16 A( * ), COPYA( * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * ZCHKTZ tests ZTZRQF and ZTZRZF. * * Arguments * ========= * * DOTYPE (input) LOGICAL array, dimension (NTYPES) * The matrix types to be used for testing. Matrices of type j * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. * * NM (input) INTEGER * The number of values of M contained in the vector MVAL. * * MVAL (input) INTEGER array, dimension (NM) * The values of the matrix row dimension M. * * NN (input) INTEGER * The number of values of N contained in the vector NVAL. * * NVAL (input) INTEGER array, dimension (NN) * The values of the matrix column dimension N. * * THRESH (input) DOUBLE PRECISION * The threshold value for the test ratios. A result is * included in the output file if RESULT >= THRESH. To have * every test ratio printed, use THRESH = 0. * * TSTERR (input) LOGICAL * Flag that indicates whether error exits are to be tested. * * A (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) * where MMAX is the maximum value of M in MVAL and NMAX is the * maximum value of N in NVAL. * * COPYA (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) * * S (workspace) DOUBLE PRECISION array, dimension * (min(MMAX,NMAX)) * * COPYS (workspace) DOUBLE PRECISION array, dimension * (min(MMAX,NMAX)) * * TAU (workspace) COMPLEX*16 array, dimension (MMAX) * * WORK (workspace) COMPLEX*16 array, dimension * (MMAX*NMAX + 4*NMAX + MMAX) * * RWORK (workspace) DOUBLE PRECISION array, dimension (2*NMAX) * * NOUT (input) INTEGER * The unit number for output. * * ===================================================================== * * .. Parameters .. INTEGER NTYPES PARAMETER ( NTYPES = 3 ) INTEGER NTESTS PARAMETER ( NTESTS = 6 ) DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 ) * .. * .. Local Scalars .. CHARACTER*3 PATH INTEGER I, IM, IMODE, IN, INFO, K, LDA, LWORK, M, $ MNMIN, MODE, N, NERRS, NFAIL, NRUN DOUBLE PRECISION EPS * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZQRT12, ZRZT01, ZRZT02, ZTZT01, ZTZT02 EXTERNAL DLAMCH, ZQRT12, ZRZT01, ZRZT02, ZTZT01, ZTZT02 * .. * .. External Subroutines .. EXTERNAL ALAHD, ALASUM, DLAORD, ZERRTZ, ZGEQR2, ZLACPY, $ ZLASET, ZLATMS, ZTZRQF, ZTZRZF * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX, MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, IOUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, IOUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'TZ' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE EPS = DLAMCH( 'Epsilon' ) * * Test the error exits * IF( TSTERR ) $ CALL ZERRTZ( PATH, NOUT ) INFOT = 0 * DO 70 IM = 1, NM * * Do for each value of M in MVAL. * M = MVAL( IM ) LDA = MAX( 1, M ) * DO 60 IN = 1, NN * * Do for each value of N in NVAL for which M .LE. N. * N = NVAL( IN ) MNMIN = MIN( M, N ) LWORK = MAX( 1, N*N+4*M+N ) * IF( M.LE.N ) THEN DO 50 IMODE = 1, NTYPES * * Do for each type of singular value distribution. * 0: zero matrix * 1: one small singular value * 2: exponential distribution * MODE = IMODE - 1 * * Test ZTZRQF * * Generate test matrix of size m by n using * singular value distribution indicated by `mode'. * IF( MODE.EQ.0 ) THEN CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), $ DCMPLX( ZERO ), A, LDA ) DO 20 I = 1, MNMIN COPYS( I ) = ZERO 20 CONTINUE ELSE CALL ZLATMS( M, N, 'Uniform', ISEED, $ 'Nonsymmetric', COPYS, IMODE, $ ONE / EPS, ONE, M, N, 'No packing', A, $ LDA, WORK, INFO ) CALL ZGEQR2( M, N, A, LDA, WORK, WORK( MNMIN+1 ), $ INFO ) CALL ZLASET( 'Lower', M-1, N, DCMPLX( ZERO ), $ DCMPLX( ZERO ), A( 2 ), LDA ) CALL DLAORD( 'Decreasing', MNMIN, COPYS, 1 ) END IF * * Save A and its singular values * CALL ZLACPY( 'All', M, N, A, LDA, COPYA, LDA ) * * Call ZTZRQF to reduce the upper trapezoidal matrix to * upper triangular form. * SRNAMT = 'ZTZRQF' CALL ZTZRQF( M, N, A, LDA, TAU, INFO ) * * Compute norm(svd(a) - svd(r)) * RESULT( 1 ) = ZQRT12( M, M, A, LDA, COPYS, WORK, $ LWORK, RWORK ) * * Compute norm( A - R*Q ) * RESULT( 2 ) = ZTZT01( M, N, COPYA, A, LDA, TAU, WORK, $ LWORK ) * * Compute norm(Q'*Q - I). * RESULT( 3 ) = ZTZT02( M, N, A, LDA, TAU, WORK, LWORK ) * * Test ZTZRZF * * Generate test matrix of size m by n using * singular value distribution indicated by `mode'. * IF( MODE.EQ.0 ) THEN CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), $ DCMPLX( ZERO ), A, LDA ) DO 30 I = 1, MNMIN COPYS( I ) = ZERO 30 CONTINUE ELSE CALL ZLATMS( M, N, 'Uniform', ISEED, $ 'Nonsymmetric', COPYS, IMODE, $ ONE / EPS, ONE, M, N, 'No packing', A, $ LDA, WORK, INFO ) CALL ZGEQR2( M, N, A, LDA, WORK, WORK( MNMIN+1 ), $ INFO ) CALL ZLASET( 'Lower', M-1, N, DCMPLX( ZERO ), $ DCMPLX( ZERO ), A( 2 ), LDA ) CALL DLAORD( 'Decreasing', MNMIN, COPYS, 1 ) END IF * * Save A and its singular values * CALL ZLACPY( 'All', M, N, A, LDA, COPYA, LDA ) * * Call ZTZRZF to reduce the upper trapezoidal matrix to * upper triangular form. * SRNAMT = 'ZTZRZF' CALL ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * Compute norm(svd(a) - svd(r)) * RESULT( 4 ) = ZQRT12( M, M, A, LDA, COPYS, WORK, $ LWORK, RWORK ) * * Compute norm( A - R*Q ) * RESULT( 5 ) = ZRZT01( M, N, COPYA, A, LDA, TAU, WORK, $ LWORK ) * * Compute norm(Q'*Q - I). * RESULT( 6 ) = ZRZT02( M, N, A, LDA, TAU, WORK, LWORK ) * * Print information about the tests that did not pass * the threshold. * DO 40 K = 1, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )M, N, IMODE, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 40 CONTINUE NRUN = NRUN + 6 50 CONTINUE END IF 60 CONTINUE 70 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' M =', I5, ', N =', I5, ', type ', I2, ', test ', I2, $ ', ratio =', G12.5 ) * * End if ZCHKTZ * END |