1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
SUBROUTINE ZGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
$ LDWORK, RWORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDWORK, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 D( * ), DF( * ), DL( * ), DLF( * ), DU( * ), $ DU2( * ), DUF( * ), WORK( LDWORK, * ) * .. * * Purpose * ======= * * ZGTT01 reconstructs a tridiagonal matrix A from its LU factorization * and computes the residual * norm(L*U - A) / ( norm(A) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========= * * N (input) INTEGTER * The order of the matrix A. N >= 0. * * DL (input) COMPLEX*16 array, dimension (N-1) * The (n-1) sub-diagonal elements of A. * * D (input) COMPLEX*16 array, dimension (N) * The diagonal elements of A. * * DU (input) COMPLEX*16 array, dimension (N-1) * The (n-1) super-diagonal elements of A. * * DLF (input) COMPLEX*16 array, dimension (N-1) * The (n-1) multipliers that define the matrix L from the * LU factorization of A. * * DF (input) COMPLEX*16 array, dimension (N) * The n diagonal elements of the upper triangular matrix U from * the LU factorization of A. * * DUF (input) COMPLEX*16 array, dimension (N-1) * The (n-1) elements of the first super-diagonal of U. * * DU2 (input) COMPLEX*16 array, dimension (N-2) * The (n-2) elements of the second super-diagonal of U. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices; for 1 <= i <= n, row i of the matrix was * interchanged with row IPIV(i). IPIV(i) will always be either * i or i+1; IPIV(i) = i indicates a row interchange was not * required. * * WORK (workspace) COMPLEX*16 array, dimension (LDWORK,N) * * LDWORK (input) INTEGER * The leading dimension of the array WORK. LDWORK >= max(1,N). * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * RESID (output) DOUBLE PRECISION * The scaled residual: norm(L*U - A) / (norm(A) * EPS) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I, IP, J, LASTJ DOUBLE PRECISION ANORM, EPS COMPLEX*16 LI * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGT, ZLANHS EXTERNAL DLAMCH, ZLANGT, ZLANHS * .. * .. Intrinsic Functions .. INTRINSIC MIN * .. * .. External Subroutines .. EXTERNAL ZAXPY, ZSWAP * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * EPS = DLAMCH( 'Epsilon' ) * * Copy the matrix U to WORK. * DO 20 J = 1, N DO 10 I = 1, N WORK( I, J ) = ZERO 10 CONTINUE 20 CONTINUE DO 30 I = 1, N IF( I.EQ.1 ) THEN WORK( I, I ) = DF( I ) IF( N.GE.2 ) $ WORK( I, I+1 ) = DUF( I ) IF( N.GE.3 ) $ WORK( I, I+2 ) = DU2( I ) ELSE IF( I.EQ.N ) THEN WORK( I, I ) = DF( I ) ELSE WORK( I, I ) = DF( I ) WORK( I, I+1 ) = DUF( I ) IF( I.LT.N-1 ) $ WORK( I, I+2 ) = DU2( I ) END IF 30 CONTINUE * * Multiply on the left by L. * LASTJ = N DO 40 I = N - 1, 1, -1 LI = DLF( I ) CALL ZAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK, $ WORK( I+1, I ), LDWORK ) IP = IPIV( I ) IF( IP.EQ.I ) THEN LASTJ = MIN( I+2, N ) ELSE CALL ZSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ), $ LDWORK ) END IF 40 CONTINUE * * Subtract the matrix A. * WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 ) IF( N.GT.1 ) THEN WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 ) WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 ) WORK( N, N ) = WORK( N, N ) - D( N ) DO 50 I = 2, N - 1 WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 ) WORK( I, I ) = WORK( I, I ) - D( I ) WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I ) 50 CONTINUE END IF * * Compute the 1-norm of the tridiagonal matrix A. * ANORM = ZLANGT( '1', N, DL, D, DU ) * * Compute the 1-norm of WORK, which is only guaranteed to be * upper Hessenberg. * RESID = ZLANHS( '1', N, WORK, LDWORK, RWORK ) * * Compute norm(L*U - A) / (norm(A) * EPS) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( RESID / ANORM ) / EPS END IF * RETURN * * End of ZGTT01 * END |