1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
SUBROUTINE ZPPT01( UPLO, N, A, AFAC, RWORK, RESID )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER N DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), AFAC( * ) * .. * * Purpose * ======= * * ZPPT01 reconstructs a Hermitian positive definite packed matrix A * from its L*L' or U'*U factorization and computes the residual * norm( L*L' - A ) / ( N * norm(A) * EPS ) or * norm( U'*U - A ) / ( N * norm(A) * EPS ), * where EPS is the machine epsilon, L' is the conjugate transpose of * L, and U' is the conjugate transpose of U. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) COMPLEX*16 array, dimension (N*(N+1)/2) * The original Hermitian matrix A, stored as a packed * triangular matrix. * * AFAC (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) * On entry, the factor L or U from the L*L' or U'*U * factorization of A, stored as a packed triangular matrix. * Overwritten with the reconstructed matrix, and then with the * difference L*L' - A (or U'*U - A). * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * RESID (output) DOUBLE PRECISION * If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, K, KC DOUBLE PRECISION ANORM, EPS, TR COMPLEX*16 TC * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANHP COMPLEX*16 ZDOTC EXTERNAL LSAME, DLAMCH, ZLANHP, ZDOTC * .. * .. External Subroutines .. EXTERNAL ZHPR, ZSCAL, ZTPMV * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DIMAG * .. * .. Executable Statements .. * * Quick exit if N = 0 * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = ZLANHP( '1', UPLO, N, A, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Check the imaginary parts of the diagonal elements and return with * an error code if any are nonzero. * KC = 1 IF( LSAME( UPLO, 'U' ) ) THEN DO 10 K = 1, N IF( DIMAG( AFAC( KC ) ).NE.ZERO ) THEN RESID = ONE / EPS RETURN END IF KC = KC + K + 1 10 CONTINUE ELSE DO 20 K = 1, N IF( DIMAG( AFAC( KC ) ).NE.ZERO ) THEN RESID = ONE / EPS RETURN END IF KC = KC + N - K + 1 20 CONTINUE END IF * * Compute the product U'*U, overwriting U. * IF( LSAME( UPLO, 'U' ) ) THEN KC = ( N*( N-1 ) ) / 2 + 1 DO 30 K = N, 1, -1 * * Compute the (K,K) element of the result. * TR = ZDOTC( K, AFAC( KC ), 1, AFAC( KC ), 1 ) AFAC( KC+K-1 ) = TR * * Compute the rest of column K. * IF( K.GT.1 ) THEN CALL ZTPMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC, $ AFAC( KC ), 1 ) KC = KC - ( K-1 ) END IF 30 CONTINUE * * Compute the difference L*L' - A * KC = 1 DO 50 K = 1, N DO 40 I = 1, K - 1 AFAC( KC+I-1 ) = AFAC( KC+I-1 ) - A( KC+I-1 ) 40 CONTINUE AFAC( KC+K-1 ) = AFAC( KC+K-1 ) - DBLE( A( KC+K-1 ) ) KC = KC + K 50 CONTINUE * * Compute the product L*L', overwriting L. * ELSE KC = ( N*( N+1 ) ) / 2 DO 60 K = N, 1, -1 * * Add a multiple of column K of the factor L to each of * columns K+1 through N. * IF( K.LT.N ) $ CALL ZHPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1, $ AFAC( KC+N-K+1 ) ) * * Scale column K by the diagonal element. * TC = AFAC( KC ) CALL ZSCAL( N-K+1, TC, AFAC( KC ), 1 ) * KC = KC - ( N-K+2 ) 60 CONTINUE * * Compute the difference U'*U - A * KC = 1 DO 80 K = 1, N AFAC( KC ) = AFAC( KC ) - DBLE( A( KC ) ) DO 70 I = K + 1, N AFAC( KC+I-K ) = AFAC( KC+I-K ) - A( KC+I-K ) 70 CONTINUE KC = KC + N - K + 1 80 CONTINUE END IF * * Compute norm( L*U - A ) / ( N * norm(A) * EPS ) * RESID = ZLANHP( '1', UPLO, N, AFAC, RWORK ) * RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS * RETURN * * End of ZPPT01 * END |