1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
SUBROUTINE ZPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
$ FERR, BERR, RESLTS ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDB, LDX, LDXACT, N, NRHS * .. * .. Array Arguments .. DOUBLE PRECISION BERR( * ), D( * ), FERR( * ), RESLTS( * ) COMPLEX*16 B( LDB, * ), E( * ), X( LDX, * ), $ XACT( LDXACT, * ) * .. * * Purpose * ======= * * ZPTT05 tests the error bounds from iterative refinement for the * computed solution to a system of equations A*X = B, where A is a * Hermitian tridiagonal matrix of order n. * * RESLTS(1) = test of the error bound * = norm(X - XACT) / ( norm(X) * FERR ) * * A large value is returned if this ratio is not less than one. * * RESLTS(2) = residual from the iterative refinement routine * = the maximum of BERR / ( NZ*EPS + (*) ), where * (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) * and NZ = max. number of nonzeros in any row of A, plus 1 * * Arguments * ========= * * N (input) INTEGER * The number of rows of the matrices X, B, and XACT, and the * order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of columns of the matrices X, B, and XACT. * NRHS >= 0. * * D (input) DOUBLE PRECISION array, dimension (N) * The n diagonal elements of the tridiagonal matrix A. * * E (input) COMPLEX*16 array, dimension (N-1) * The (n-1) subdiagonal elements of the tridiagonal matrix A. * * B (input) COMPLEX*16 array, dimension (LDB,NRHS) * The right hand side vectors for the system of linear * equations. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (input) COMPLEX*16 array, dimension (LDX,NRHS) * The computed solution vectors. Each vector is stored as a * column of the matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * XACT (input) COMPLEX*16 array, dimension (LDX,NRHS) * The exact solution vectors. Each vector is stored as a * column of the matrix XACT. * * LDXACT (input) INTEGER * The leading dimension of the array XACT. LDXACT >= max(1,N). * * FERR (input) DOUBLE PRECISION array, dimension (NRHS) * The estimated forward error bounds for each solution vector * X. If XTRUE is the true solution, FERR bounds the magnitude * of the largest entry in (X - XTRUE) divided by the magnitude * of the largest entry in X. * * BERR (input) DOUBLE PRECISION array, dimension (NRHS) * The componentwise relative backward error of each solution * vector (i.e., the smallest relative change in any entry of A * or B that makes X an exact solution). * * RESLTS (output) DOUBLE PRECISION array, dimension (2) * The maximum over the NRHS solution vectors of the ratios: * RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) * RESLTS(2) = BERR / ( NZ*EPS + (*) ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, IMAX, J, K, NZ DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM COMPLEX*16 ZDUM * .. * .. External Functions .. INTEGER IZAMAX DOUBLE PRECISION DLAMCH EXTERNAL IZAMAX, DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DIMAG, MAX, MIN * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) * .. * .. Executable Statements .. * * Quick exit if N = 0 or NRHS = 0. * IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RESLTS( 1 ) = ZERO RESLTS( 2 ) = ZERO RETURN END IF * EPS = DLAMCH( 'Epsilon' ) UNFL = DLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL NZ = 4 * * Test 1: Compute the maximum of * norm(X - XACT) / ( norm(X) * FERR ) * over all the vectors X and XACT using the infinity-norm. * ERRBND = ZERO DO 30 J = 1, NRHS IMAX = IZAMAX( N, X( 1, J ), 1 ) XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL ) DIFF = ZERO DO 10 I = 1, N DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) ) 10 CONTINUE * IF( XNORM.GT.ONE ) THEN GO TO 20 ELSE IF( DIFF.LE.OVFL*XNORM ) THEN GO TO 20 ELSE ERRBND = ONE / EPS GO TO 30 END IF * 20 CONTINUE IF( DIFF / XNORM.LE.FERR( J ) ) THEN ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) ) ELSE ERRBND = ONE / EPS END IF 30 CONTINUE RESLTS( 1 ) = ERRBND * * Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where * (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) * DO 50 K = 1, NRHS IF( N.EQ.1 ) THEN AXBI = CABS1( B( 1, K ) ) + CABS1( D( 1 )*X( 1, K ) ) ELSE AXBI = CABS1( B( 1, K ) ) + CABS1( D( 1 )*X( 1, K ) ) + $ CABS1( E( 1 ) )*CABS1( X( 2, K ) ) DO 40 I = 2, N - 1 TMP = CABS1( B( I, K ) ) + CABS1( E( I-1 ) )* $ CABS1( X( I-1, K ) ) + CABS1( D( I )*X( I, K ) ) + $ CABS1( E( I ) )*CABS1( X( I+1, K ) ) AXBI = MIN( AXBI, TMP ) 40 CONTINUE TMP = CABS1( B( N, K ) ) + CABS1( E( N-1 ) )* $ CABS1( X( N-1, K ) ) + CABS1( D( N )*X( N, K ) ) AXBI = MIN( AXBI, TMP ) END IF TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) ) IF( K.EQ.1 ) THEN RESLTS( 2 ) = TMP ELSE RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP ) END IF 50 CONTINUE * RETURN * * End of ZPTT05 * END |